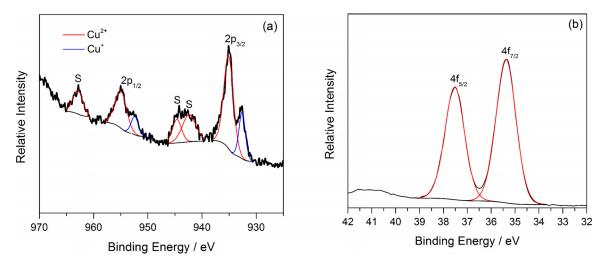
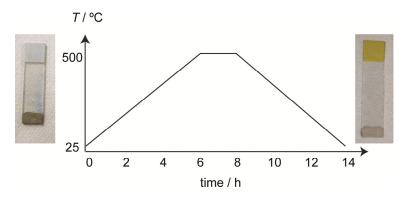
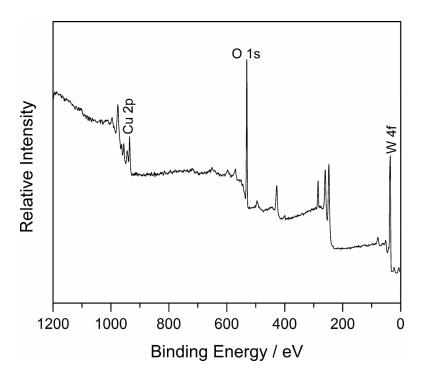
Electronic Supplementary Information for:


Electrochemical Deposition and Photoelectrochemistry of CuWO₄, a Promising Photoanode for Water Oxidation

Joseph E. Yourey and Bart M. Bartlett^{*} Department of Chemistry, University of Michigan 930 N. University Ave. Ann Arbor MI, 48109-1055


Table of Contents

igure S1. X-ray photoelectron spectra for Cu(2p) and W(4f) in an amorphous, as deposited lm	S2
Figure S2. Photographs and heating scheme for the crystallization of CuWO ₄ electrodes	S2
Figure S3. X-ray photoelectron survey scan of crystalline CuWO ₄ electrodes Figure S4. X-ray diffraction pattern of CuWO ₄ electrode, as deposited and after annealing 400 °C.	S3
	S3
Figure S5. Bulk electrolysis experiment of CuWO ₄ and WO ₃ electrodes at 0.5 V vs Ag/AgCl applied bias	S4
Figure S6. Bode plot constructed from EIS data	S4
Figure S7. Spectral Response of CuWO ₄ and WO ₃ electrodes	S5
Figure S8. Electrochemical deposition control experiments for Cu^{2+} and $W_2O_{11}^{2-}$	S5


Figure S1 (a) X-Ray photoelectron spectra of amorphous films for Cu(2p) showing peaks indicative of both Cu^+ (blue) and Cu^{2+} (red) and (b) W(4f) indicative of W^{6+} .

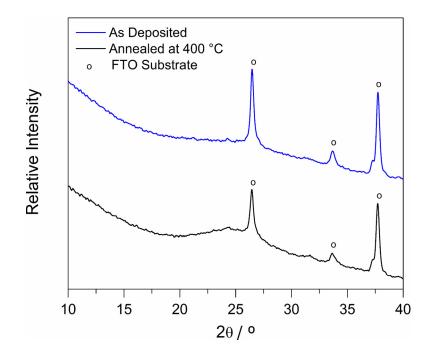
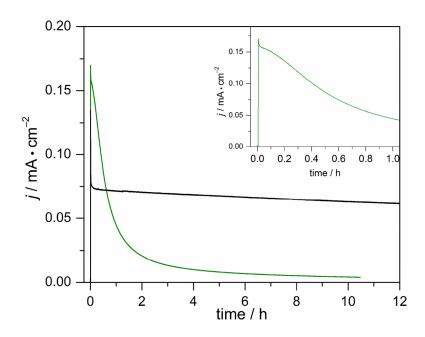
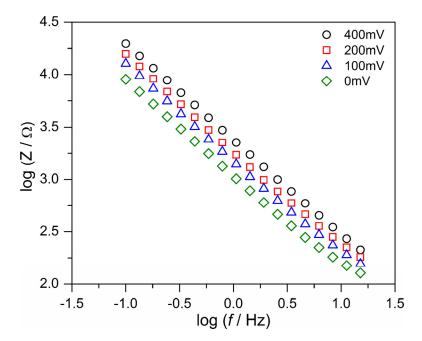
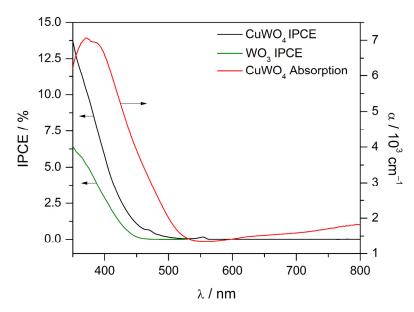

Figure S2 Heating scheme for the crystallization of CuWO₄ electrodes. The ramp rate was \sim 1.3 °C/min and the annealing temperature was kept at 500 °C for 2 h.

Figure S3 X-Ray photoelectron survey scan. The Cu(2p), O(1s), and W(4f) binding energies are noted in the figure.

Figure S4 X-ray diffraction pattern of the as deposited film (blue) and after annealing at 400 °C for 2 hours (black).

Figure S5 Bulk electrolysis experiment of $CuWO_4$ (black) and WO_3 (green) at 0.5V vs Ag/AgCl in a 0.1M phosphate buffer (pH 7). **Inset.** Decay of the WO₃ photoanode over the first hour of illumination.

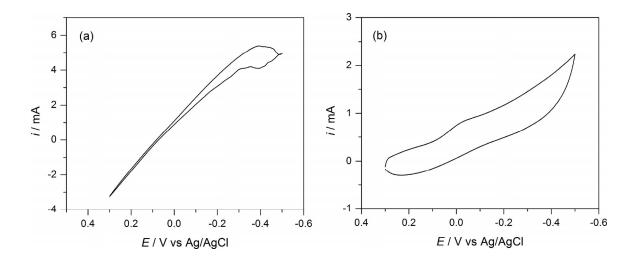

Figure S6 Bode plot for a $CuWO_4$ film constructed from the impedance data taken in 0.1 M potassium phosphate buffer (pH 7).

Figure S7 Spectral response of CuWO₄ and WO₃ in 0.1 M Na₂SO₄ with 10% MeOH and the quantitative absorption spectrum of a 2 μ m thick CuWO₄ film.

Figure S8 Electrochemical deposition control experiments in the same potential window (+0.3 to -0.5 V vs Ag/AgCl) for (a) 0.25M Cu²⁺ in a pH 1.1 solution of 70:30 H₂O:2-propanol and (b) 0.25M W₂O₁₁²⁻ in a pH 1.1 solution of 70:30 H₂O:2-propanol.

