Multifunctional Porous Aramids (Aerogels) by

Efficient Reaction of Carboxylic Acids and Isocyanates

Nicholas Leventis^{*,1}, Chakkaravarthy Chidambareswarapattar¹, Dhairyashil P. Mohite¹, Zachary

J. Larimore², Hongbing Lu^{*,3} and Chariklia Sotiriou-Leventis^{*,1}

1. Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409,

USA, e-mail: leventis@mst.edu, cslevent@mst.edu

 Department of Mechanical Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA

Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX
75080, USA, e-mail: hongbing.lu@utdallas.edu

Electronic Supplementary Information

- Figure S.1 (A) Solid state ¹³C NMR spectrum of a polyamide aerogel prepared from trimesic acid and tris(4-isocyanatophenyl)methane using 15% w/w solids in DMF. (B) Liquid ¹³C NMR spectrum of trimesic acid. (C) Liquid ¹³C NMR spectrum of tris(4-isocyanatophenyl)methane.
- Figure S.2 X-ray diffraction (XRD) data of polyamide aerogels prepared in DMF from trimesic acid and tris(4-isocyanatophenyl)methane using various solids formulations.
- **Table S.1**Heat capacities of standard samples at 23 °C run at the heating rates indicated.

Figure S.1 (A) Solid state ¹³C NMR spectrum of a polyamide aerogel prepared from trimesic acid and tris(4-isocyanatophenyl)methane using 15% w/w solids in DMF. (B) Liquid ¹³C NMR spectrum of trimesic acid. (C) Liquid ¹³C NMR spectrum of tris(4-isocyanatophenyl)methane. (Product is supplied as an ethylacetate solution, hence the residual peaks above baseline.)

Figure S.2 X-ray diffraction (XRD) data of polyamide aerogels prepared in DMF from trimesic acid and tris(4-isocyanatophenyl)methane using various solids formulations. Degrees of crystallinity calculated from the integrated peak intensity above the broad background.

	Observed	Literature Value	ratio
	[J g ⁻¹ K ⁻¹]	[J g ⁻¹ K ⁻¹]	[Lit./Obs.]
Rutile (TiO ₂ at 0.5 °C min ⁻¹)	0.770	0.711	0.92
Rutile (TiO ₂ at 2 °C min ⁻¹)	0.770	0.711	0.92
KCI (at 2 °C min ⁻¹)	0.746	0.695	0.93
Aluminum (at 0.5 °C min ⁻¹)	0.941	0.91	0.97
Graphite (at 2 °C min ⁻¹)	0.805	0.72	0.89
Corundum (Al ₂ O ₃ at 2 $^{\circ}$ C min ⁻¹)	0.857	0.775	0.90
		Average:	0.92
		Standard Deviation:	0.028

Table S.1Heat capacities of standard samples at 23 °C run at the heating rates indicated.