Electronic Supplementary Information

Enhanced sol-gel polymerization of organoallylsilanes by solvent effect

Yoshifumi Maegawa, ^{a,b} Norihiro Mizoshita, ^{a,b} Takao Tani, ^{a,b} Toyoshi Shimada, ^{b,c} and Shinji Inagaki*^{a,b}

^a Toyota Central R&D Laboratories, Inc., Nagakute, Aichi 480-1192, Japan.

^b Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan

Contents

Observation of sol-gel polymerization behaviors of 1a and 1b by ¹H NMR spectroscopy
 S2-5

 Identification of the generated gas during sol-gel polymerization of 1a and 1b
 Sol-gel polymerization of 1a in other organic solvents
 Relationship between initial deallylation rate v₀ of 1a and other solvent parameters
 References

^c Department of Chemical Engineering, Nara National College of Technology, 22 Yata-cho, Yamatokoriyama, Nara 639-1080, Japan.

1. Observation of sol-gel polymerization behaviors of 1a and 1b by ¹H NMR spectroscopy

Halp
$$H_3$$
C H_3 C H_3 C H_4 C $H_$

Scheme S1 Acid-catalyzed sol-gel polymerization of **1a** and **1b**. The protons H^a , H^b , H^c and H^d were monitored by ${}^{1}H$ NMR spectroscopy.

Conversion of the allyl groups in the organoallylsilane precursors $\mathbf{1a}$ and $\mathbf{1b}$ during the reactions was monitored by 1 H NMR spectroscopy. The measurements were carried out for their sol-solutions containing internal standards (1,4-dichlorobenzene: DCB or naphthalene: Nap). Figs. S1-S6 show the 1 H NMR spectra of $\mathbf{1a}$ or $\mathbf{1b}$ in various deutrated solvents at 0 min, 10 min and 4 h after the addition of HCl. In the figures, the letters (a, b, c, and d) indicate the signals corresponding to the protons shown in Scheme 1.

For $\mathbf{1a}$, the signals corresponding to the proton b completely disappeared along with the appearance of the signals corresponding to the proton d within 10 min for all the solvents (Figs. S1-S5), which indicates that the ethoxy group in $\mathbf{1a}$ is immediately converted to ethanol regardless of the nature of solvents. In contrast, the nature of solvents strongly affected the deallylation rate of $\mathbf{1a}$. After 4 h, intensities of the signals corresponding to the proton a decreased by 100% for MeCN (Fig. S1), 76% for acetone (Fig. S2) and less than 30% for MeOH, THF, and DMSO (Figs. S3-S5). Weak signals at the similar positions after 4 h for MeCN were identified as the proton c of propene dissolved in the solvents.

MeCN was also effective for deallylation of **1b** and the signals corresponding to the proton *a* completely disappeared within 4 h (Fig. S6a). Meanwhile, 80% of the allyl groups remained after 4 h for acetone (Fig. S6b).

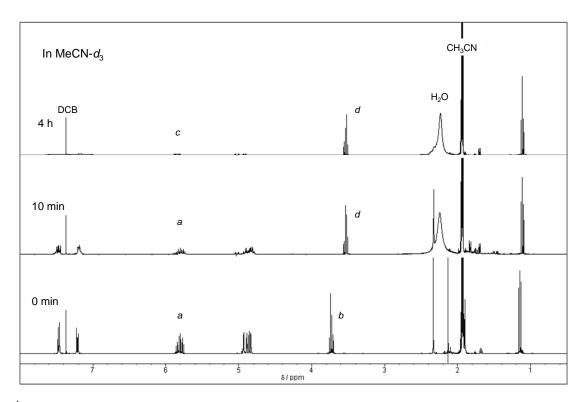


Fig. S1 1 H NMR spectra of the sol-solution of 1a in MeCN- d_3 at 0 min, 10 min and 4 h after the addition of HCl.

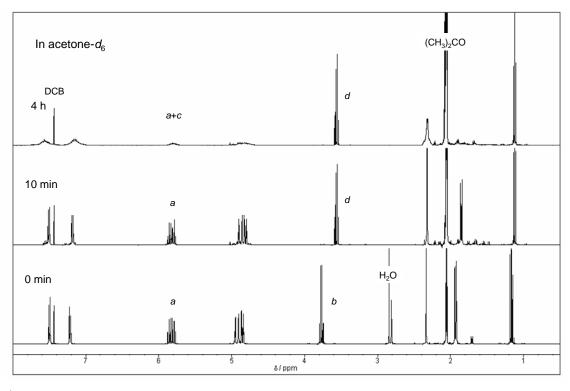


Fig. S2 1 H NMR spectra of the sol-solution of 1a in acetone- d_{6} at 0 min, 10 min and 4 h after the addition of HCl.

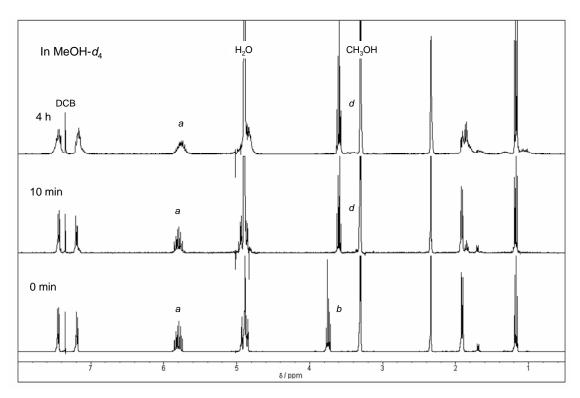
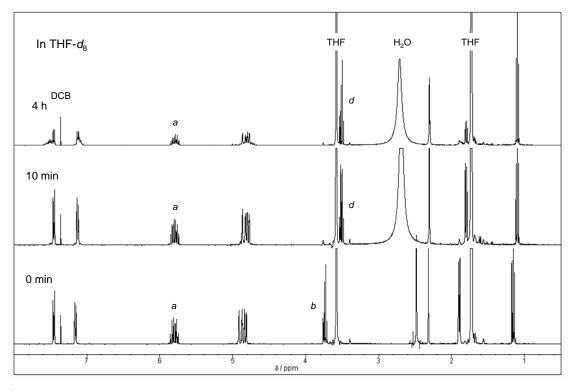



Fig. S3 1 H NMR spectra of the sol-solution of 1a in MeOH- d_4 at 0 min, 10 min and 4 h after the addition of HCl.

Fig. S4 ¹H NMR spectra of the sol-solution of **1a** in THF- d_8 at 0 min, 10 min and 4 h after the addition of HCl.

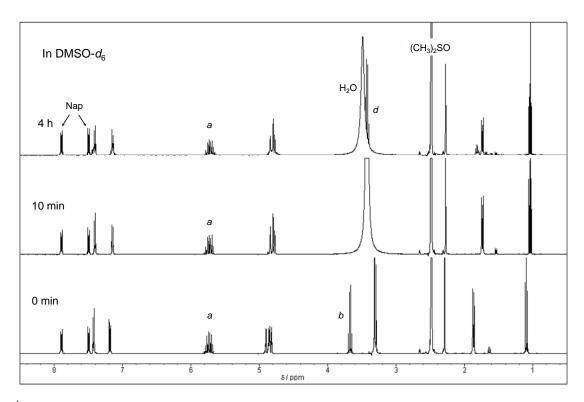
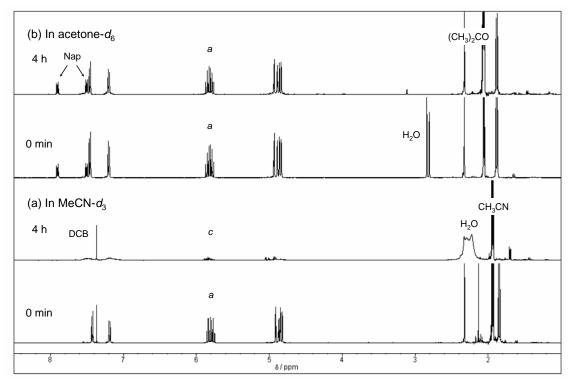



Fig. S5 ¹H NMR spectra of the sol-solution of 1a in DMSO- d_6 at 0 min, 10 min and 4 h after the addition of HCl.

Fig. S6 ¹H NMR spectra of the sol-solutions of **1b** in (a) MeCN- d_3 and (b) acetone- d_6 at 0 min and 4 h after the addition of HCl.

2. Identification of the generated gas during sol-gel polymerization of 1a and 1b

1a or 1b
$$\frac{2 \text{ M HCl aq}}{\text{MeCN}}$$

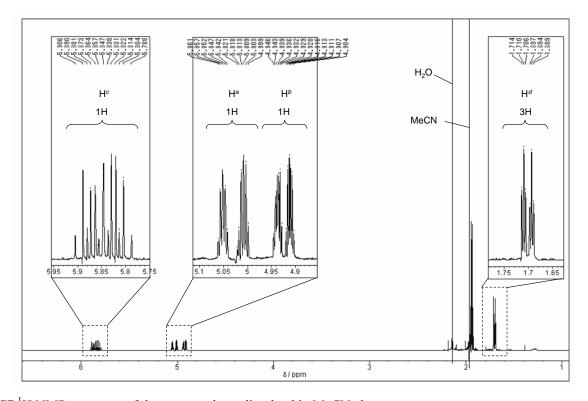
$$60 ^{\circ}\text{C}, 1h}$$

$$-\text{Si} \text{O} \text{OH}$$

$$-\text{H}^{b} \text{H}^{c} \text{CH}^{d}_{3} \uparrow$$

$$-\text{H}^{c} \text{CH}^{d}_{3} \uparrow$$

$$-\text{H}^{c} \text{CH}^{d}_{3} \uparrow$$


$$-\text{H}^{c} \text{CH}^{d}_{3} \uparrow$$

$$-\text{H}^{c} \text{CH}^{d}_{3} \uparrow$$

Scheme S2 Generation of propene during acid-catalyzed sol-gel polymerization of 1a and 1b.

The generated gas during acid-catalyzed sol-gel polymerization of **1a** and **1b** was identified by ¹H NMR spectroscopy (Scheme S2). A 50 mL, one-necked, round-bottomed flask equipped with a magnetic stirring bar was sequentially charged with **1a** or **1b** (250 mg, 1.0 mmol) and MeCN (2.50 mL). After addition of a 2 M HCl aqueous solution (0.25 mL, 0.50 mmol), the flask was capped with a septum and stirred at 60 °C for 1 h (*Caution!: the increased inner pressure may blow out the septum*). The gas phase in the flask was collected with a syringe and passed through MeCN-*d*₃. The solution was immediately characterized by ¹H NMR spectroscopy (Fig. S1). The generated gas was identified as propene. ¹

¹H NMR (400 MHz, MeCN- d_3) δ 1.70 (ddd, J = 6.4 Hz, 1.7 Hz, 1.4 Hz, 3H), 4.93 (ddq, J = 10.1 Hz, 2.2 Hz, 1.4 Hz, 1H), 5.04 (ddq, J = 16.6 Hz, 2.2 Hz, 1.7 Hz, 1H), 5.85 (ddq, J = 16.6 Hz, 10.1 Hz, 6.4 Hz, 1H).

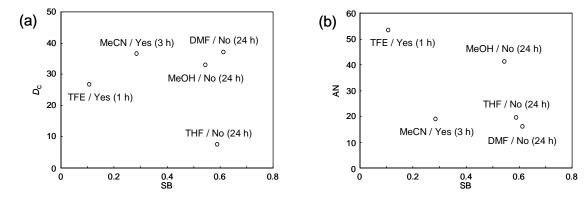


Fig. S7 1 H NMR spectrum of the generated gas dissolved in MeCN- d_3 .

3. Sol-gel polymerization of 1a in other organic solvents

We investigated the sol-gel polymerization behaviors of $\mathbf{1a}$ in other organic solvents to further confirm that SB rather than $D_{\rm C}$ or AN is the key factor of the reaction. $N_{\rm c}$ is the large of $N_{\rm c}$ and $N_{\rm c}$ is the large of $N_{\rm c}$ in other organic solvents to further confirm that SB rather than $D_{\rm c}$ or AN is the key factor of the reaction. $N_{\rm c}$ is discontinuously formalized (DMF; SB: 0.614, $D_{\rm c}$: 35.9, AN: 16.0) and a mixed solvent of 2,2,2-trifluoroethanol (TFE; SB: 0.107, $D_{\rm c}$: 26.7, AN: 53.3)/THF (10:1) were newly selected and the sol-gel polymerization were carried out under 0.2 M HCl concentration for this purpose. The use of DMF did not form a solid organosilica film from the sol solution of $\mathbf{1a}$ even after stirring for 24 h. In contrast, the use of TFE/THF formed a solid organosilica film after stirring for only 1 h.

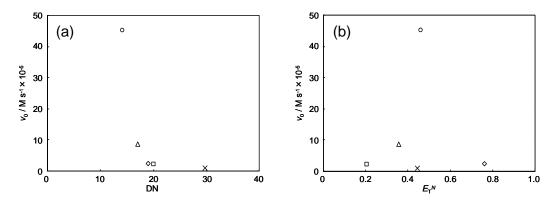

These experimental results and relationship between the SB and $D_{\rm C}$ or AN value were plotted, respectively (Fig. S8). As shown in Figs. S8a and S8b, the use of low SB solvents was found to be effective for the reaction regardless of $D_{\rm C}$ and AN values (MeCN vs DMF or THF, and TFE/THF vs MeCN). In addition, it should be noted that the use of high SB solvents is ineffective for the reaction regardless of $D_{\rm C}$ and AN values (DMF, MeOH and THF). These results clearly indicate that that SB is the key factor of the reaction rather than $D_{\rm C}$ or AN.

Fig. S8 Plots of (a) D_C and (b) AN vs. SB for DMF, TFE, MeCN, MeOH and THF. "Yes (X h)" and "No (X h)" denotes whether a solid organosilica film was formed or not from the sol solutions of **1a** using the corresponding solvents after stirring for X h.

4. Relationship between initial deallylation rate v_0 of 1a and other solvent parameters

The initial deallylation rate v_0 of **1a** was plotted against Gutmann's donor number (DN: an index of Lewis basicity)² and Dimroth-Reichardt's E_T^N value (an index of solvent polarity)³ (Fig. S9) in addition to Catalán solvent basicity (SB), dielectric constant (D_C) and Gutmann's acceptor number (AN) (Fig. 4 in the main text). Apparent correlation was observed for v_0 vs DN, but not for v_0 vs E_T^N value.

Fig. S9 Relationships between the initial deallylation rate (v_0) of **1a** and (a) Gutmann's donor number (DN) or (b) Dimroth-Reichardt's E_T^N value. Solvents were labelled as follows: MeCN (\bigcirc); acetone (\triangle); MeOH (\diamondsuit); THF (\square); and DMSO (\times).

5. References

- (1) G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, **29**, 2176.
- (2) V. Gutmann, Coord. Chem. Rev. 1976, 19, 225.
- (3) C. Reichardt, Chem. Rev., 1994, 94, 2319.