Supporting Information For

Biomolecule-assisted hydrothermal synthesis of In₂S₃ porous films and enhanced

photocatalytic properties

Weiming Qiu^{*a*}, Mingsheng Xu^{*a*}, Xi Yang^{*a*}, Fei Chen^{*b*}, Yaxiong Nan^{*a*}, Jinglin Zhang^{*a*}, Hideo Iwai^{*c*}, and Hongzheng Chen^{*^{*a*}}

^a State Key Lab of Silicon Materials, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, & Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China

Tel/Fax: +86-571-87952557; E-mail: hzchen@zju.edu.cn

^b Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, P. R. China

^c Materials Analysis Station, Department of Materials Infrastructure, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.

* Corresponding author: hzchen@zju.edu.cn (Hongzheng Chen)

Fig. S1 XRD pattern for the film obtained by hydrothermal treatment at 160 $^{\circ}$ C for 12 h without adding GSH, showing the diffraction peaks of In(OH)₃. The unlabeled peaks may be attributed to the ITO substrates and other compounds existing in the film.

Fig. S2 UV-Vis absorption spectra of the In_2S_3 porous films obtained at different reaction times.

Fig. S3 SEM images illustrating the morphology of the In_2S_3 dense film (~1 µm) synthesized by chemical bath deposition method using $In(NO_3)_3$ and thioacetamide as precursors: (a) Top view; (b) Cross-section view.

Fig. S4 SEM image of the In_2S_3 porous film after photocatalytic test (Under UV radiation for 2h).