

Guogang Li, ^{*a,b*} Dongling Geng, ^{*a,b*} Mengmeng Shang, ^{*a,b*} Chong Peng, ^{*a,b*} Ziyong Cheng ^{*a*} and Jun Lin*^{*a*}

Received (in XXX, XXX) Xth XXXXXXXX 201X, Accepted Xth XXXXXXXX 201X First published on the web Xth XXXXXXXX 201X DOI: 10.1039/b000000x

Figure S1. The XRD patterns of (a) CGS: x Ce³⁺ (x = 0.01-0.09) and (b) CGS: 0.05 Ce³⁺, y Mn²⁺ (y = 0.01-0.30) samples sintered at 1350 °C for 2 h in H₂/N₂ (5%/95%). The standard data of Ca₂Gd₈(SiO₄)₆O₂ (JCPDS No.28-0212) is shown as reference.

Figure S2. Raman spectrum of the prepared polycrystalline material $Ca_2Gd_8(SiO_4)_6O_2$ (a) and $Ca_2Gd_8(SiO_4)_6O_2$: $0.05Ce^{3+}$, $0.03Mn^{2+}$ (b) samples.

Figure S3. The variation of PL spectra of CGS: $x \text{ Ce}^{3+}$ samples with the Ce³⁺ concentration (x, mol%) under 287 nm UV excitation.

Figure S4. The peak position of CGS: $0.05Ce^{3+}$, yMn^{2+} samples as a function of Mn^{2+} concentration (y) under 287 nm UV excitation.

Figure S5. Decay curves of Ce^{3+} emission in CGS: $0.05Ce^{3+}$, yMn^{2+} (y = 0.01, 0.03, 0.05) samples excited at 355 nm and monitored at 428 nm.

Figure S6. Energy transfer efficiency from Ce^{3+} to Mn^{2+} in CGS: 0.05 Ce^{3+} , yMn^{2+} (0-0.50) samples ($\lambda_{ex} = 287$ and 330 nm).