Supplementary Information - Phonon engineering through crystal chemistry Eric S. Toberer, Alex Zevalkink, G. Jeffrey Snyder

Materials Science, California Institute of Technology, 1200 E. California Blvd. Pasadena, CA 91125,

Compound	Exp. κ_L (W/mK)	N (primitive cell)	$V^{1/3}$ (Å)	θ_D (K)	γ	Calc. κ_L (W/mK)	References
AlSb	56	2	2.83	265	0.6	57	[1, 2]
BaO	2.3	2	2.76	290	1.5	7.1	[2]
BP	350	2	2.27	844	0.75	250	[2]
CdTe	7.5	2	3.24	151	0.52	24	[1, 2]
GaAs	45	2	2.81	277	0.75	39	[2]
GaP	100	2	2.72	346	0.75	52	[2]
GaSb	40	2	3.05	265	0.75	47	[1, 2]
Ge	65	2	2.83	296	0.76	46	[2, 3]
HgTe	2.5	2	3.23	141	1.9	2.5	[4, 5]
InAs	30	2	3.03	208	0.57	38	[2]
InP	93	2	2.92	277	0.6	60	[2]
InSb	16.5	2	3.24	202	0.56	45	[1, 2]
PbS	2.9	2	2.97	230	2	6.4	[2, 3, 6]
PbSe	2	2	3.06	126	1.5	2.4	[2, 7]
PbTe	2	2	3.21	132	1.45	3.5	[2, 8]
Si	166	2	2.70	498	0.56	140	[2, 3]
SnTe	1.5	2	3.15	155	2.1	2.1	[4, 9]
SrO	12	2	2.57	340	1.52	13	[2]
ZnTe	18	2	3.05	195	0.97	13	[2]
ZnS	27	2	2.66	290	0.75	30	[2]
ZnSe	33	2	2.83	239	0.75	26	[2, 3]
Mg_2Ge	13	3	2.79	332	1.38	11	[3]
$\mathrm{Mg}_{2}\mathrm{Si}$	7	3	2.78	476	1.32	22	[3, 10]
$\mathrm{Mg}_{2}\mathrm{Sn}$	16	3	2.95	224	1.27	5.9	[3]
CdS	16	4	2.92	214	0.75	15	[2]
CdSe	4.4	4	3.04	164	0.6	14	[2, 4]
InSe	6.9	4	3.07	190	1.2	6.3	[4]
ZnO	60	4	2.29	481	0.75	72	[2]
${\rm Bi}_2{\rm Te}_3$	1.6	5	3.24	155	1.49	3.7	[4, 11]
$\mathrm{Sb}_{2}\mathrm{Te}_{3}$	2.4	5	3.15	160	1.49	3.2	[4]
${\rm CuGaTe}_2$	2.2	8	3.00	226	1.46	5.6	[4, 12]
InTe	1.7	8	3.17	186	1	7.8	[4, 13]
La_2Te_3	1.2	14	3.17	208	1.76	3.6	[14]
CoSb_3	10	16	2.85	307	0.95	49	[15]
IrSb_3	16	16	2.91	308	1.42	13	[16]
$CeFe_4Sb_{12}$	1.9	17	2.82	287	1.42	8.7	[17]
$\mathrm{Ba}_8\mathrm{Ga}_{16}\mathrm{Ge}_{30}$	1.1	54	2.86	300	1.6	4.6	[18, 19]
$Yb_{14}AlSb_{11}$	0.6	104	3.07	160	1.5	1.2	[20]
$Yb_{14}MnSb_{11}$	0.5	104	3.07	160	1.5	1.2	[20]

TABLE I: Summary of the data which was used to calculate Figure 5 and 7 in the text. Our survey of the literature suggests fairly few compounds are sufficiently characterized for calculation of κ_L . Here, the calculated κ_L is the sum of κ_a and κ_o . The κ_a is obtained by solving Eq. 2 for a combination of Umklapp and boundary scattering $(d = 1 \, \mu m)$ limit with $\omega_m ax = \omega_a$ and $C_s(\omega) = C_{s,HT}(\omega)$. The κ_o is determined from Eq. 12.

- Garbato, L. & Rucci, A. Ionicity dependence of lattice thermal conductivity in tetrahedral semiconductors. Chem. Phys. Lett. 61, 542 – 544 (1979).
- [2] Morelli, D. T. & Slack, G. A. High Thermal Conductivity Materials, chap. High lattice thermal conductivity solids, 37–64 (Springer: New York, NY, 2005).
- [3] Slack, G. A. Solid State Physics, vol. 34 (Academic Press, New York, 1979).
- [4] Spitzer, D. P. Lattice thermal conductivity of semiconductors: A chemical bond approach. J. Phys. Chem. Solids 31, 19 (1970).
- [5] Khattak, G. D., Akbarzadeh, H. & Keesom, P. H. Specific heats of mercury chalcogenides and HgI₂ between 0.4 and 50 K. Phys. Rev. B 23, 2911–2915 (1981).
- [6] Parkinson, D. H. & Quarrington, J. E. The molar heats of lead sulphide, selenide and telluride in the temperature range 20 K to 260 K. Proc. Phys. Soc. 67, 569 (1954).
- [7] Wang, H., Pei, Y., LaLonde, A. D. & Snyder, G. J. Heavily doped p-type PbSe with high thermoelectric performance: an alternative for PbTe. Adv. Mat. (2011).
- [8] Yanzhong, P., Lalonde, A., Iwanaga, S. & Snyder, G. J. High thermoelectric figure of merit in heavy-hole dominated pbte. *Energy and Env. Science* (2011).
- [9] Smith, T. F., Birch, J. A. & Collins, J. G. Low-temperature heat capacity, thermal expansion and Grüneisen parameters for SnTe. J. Phys. C: Solid State Phys. 9, 4375 (1976).
- [10] Bux, S. K. et al. Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide, submitted (2011).
- [11] Shoemake, G. E., Rayne, J. A. & Ure, R. W. Specific Heat of n- and p-Type Bi₂Te₃ from 1.4 to 90K. Phys. Rev. 185, 1046–1056 (1969).
- [12] Thermal conductivity of CuGaTe₂. Solid State Comm. 64, 439 442 (1987).
- [13] Alicy, N. C., Kerimov, I. C. & Kurbanov, M. M. Sov. Phys. Solid State 14, 3106 (1973).
- [14] May, A. F., Fleurial, J.-P. & Snyder, G. J. Thermoelectric performance of lanthanum telluride produced via mechanical alloying. *Phys. Rev. B* 78, 125205 (2008).
- [15] Morelli, D. et al. Low-temperature transport-properties of p-type CoSb₃. Phys. Rev. B 51, 9622–9628 (1995).
- [16] Slack, G. A. & Tsoukala, V. G. Some properties of semiconducting IrSb₃. J. Appl. Phys. 76, 1665–1671 (1994).
- [17] Morelli, D. T. & Meisner, G. P. Low temperature properties of the filled skutterudite cefe4sb12. J. Appl. Phys. 77, 3777–3781 (1995).
- [18] Sales, B. C., Chakoumakos, B. C., Jin, R., Thompson, J. R. & Mandrus, D. Structural, magnetic, thermal, and transport properties of X₈Ga₁₆Ge₃₀ (X=Eu, Sr, Ba) single crystals. *Phys. Rev. B* **63**, 245113 (2001).
- [19] May, A. F., Toberer, E. S., Saramat, A. & Snyder, G. J. Characterization and analysis of thermoelectric transport in n-type Ba₈Ga_{16-x}Ge_{30-x}. *Phys. Rev. B* 80, 125205 (2009).
- [20] Cox, C. A. et al. Structure, Heat Capacity, and High-Temperature Thermal Properties of Yb₁₄Mn_{1-x}Al_xSb₁₁. Chem. Mater. 21, 1354–1360 (2009).