Electronic Supplementary Information

Solution-processed Organic Micro Crystal Transistor Based on Tetraceno[2,3-*b*]thiophene from a Monoketone Precursor

Motonori Watanabe,^a Ting-Han Chao,^b Shun-Wei Liu,^a Ching-Ting Chien,^a Yuan Jay Chang,^a Chih-Hsien Yuan,^a Kuan-Chun Huang,^a Shu-Hua Chien,^a Teruo Shinmyozu,^{*c} and Tahsin J. Chow^{*a}

^a Institute of Chemistry, Academia Sinica, No.128, Academia Road Sec 2, Nankang, Taipei, 11529, Taiwan. Fax: 886 2 27884179; Tel: 886227898552; E-mail: tschow@chem.sinica.edu.tw

^b Department of Chemistry, National Taiwan Normal University, Ting-Chow Rd, Taipei, 11677, Taiwan. Tel: 886-2-77346108. ^c Institute of Materials Chemistry and Engineering (IMCE), Kyushu University, 6-10-1 Hakozaki, Fukuoka, 812-8581, Japan. Fax: 81 92 642 2735; Tel: 81 92 642 2720; E-mail: shinmyo@ms.ifoc.kyushu-u.ac.jp

Contents

1.	¹ H and ¹³ CNMR spectra	S2-S5
2.	DSC plots	S5
3.	UV/Vis spectra	S6
4.	Optical microscopic image	S6-S7
5.	OFET characteristics	S7-S8
6.	EPR spectra	S8
7.	XRD plots	S9

1. ¹H and ¹³C NMR spectra

2. DSC plots

Figure S8. DSC profiles of tetraceno[2,3-*b*]thiophene precursor **1** at 5 deg/min heating rate by using indium as calibration.

3. UV/Vis spectra

Figure S9. UV/Vis spectra of pentacene precursor in THF $(1.0 \times 10^{-4} \text{ M})$ under irradiated with a 1.25 mW/cm² UV lamp at 365 nm under an oxygen-free atmosphere. Measurements were take during 0 to 90 s with 10 s time interval.

4. Optical microscopic image

Figure S10. Optical image of microscopic crystals of tetraceno[2,3-*b*]thiophene prepared from **1**. (a) Crystal produced by heating in DCB at 130 °C; (b) crystals produced by heating CB at 130 °C; (c) crystals produced by UV irradiation in THF at 357 nm using a 1.25 mW/cm² UV lamp.

Figure S11. Single crystal OFET made with tetraceno[2,3-*b*]thiophene. (a) crystal obtained by heating at 130 °C in DCB; and (b) crystal obtained by UV exposure using a 1.25 mW/cm² 365 nm UV lamp in THF.

5. OFET characteristics

Figure S12. OFET characteristics based a single crystal of tetraceno[2,3-*b*]thiophene produced from **1**. (Top) A DCB solution of **1** was heated at 130 °C first, after crystallization it was then spin-coated on SiO₂; (bottom) a DCB solution of **1** was spin-coated on SiO₂ to form a thin film first, then the film was heated at 130 °C to convert **1** to tetraceno[2,3-*b*]thiophene. (left) Output characteristics; (right) transfer characteristics recorded with $V_{DS} = -40V$.

Figure S12. Performance of measured tetraceno[2,3-*b*]thiophene single crystal FETs in histogram: upper ; single crystal from UV exposure of FET mobility (a) and on/off ratio (b), under ; single crystal from heat of FET mobility (c) and on/off ratio (d)

6. EPR spectra

Figure S13. EPR spectra of tetraceno[2,3-*b*]thiophene in coced H₂SO₄ solution (1.0×10^{-3} M) with O₂ free condition.

7. XRD plots

Figure S14. (a) XRD spectra of thin-film made with **1**; (b) the film was heated at 130 °C for 10 min; (c) simulated powder x-ray patterned of tetraceno[2,3-*b*]thiophene.