Supporting Information

Ultralow Density, Hollow Silica Foams Through Interfacial Reaction and Their Exceptional Properties for Environmental and Energy Applications

Qin Yue,^a Yuanzhi Li, ^{*a. c} Ming Kong,^a Jichao Huang,^a Xiujian Zhao,^a Jun Liu, ^{*b} Ralph E Williford^b

¹⁰ "Key Lab. of Silicate Materials Science and Engineering (Wuhan University of Technology), Ministry of Education, 122 Luoshi Road, Wuhan 430070, P.R. China

^bPacific Northwest National Laboratory, Richland, Washington 99352 ^cHubei Key Laboratory of Pollutant Analysis & Reuse Technology

15

Figure S2. XRD patterns of the synthesized silica foam.

Figure S1. Size distribution of the synthesized silica foam.

45 Figure S3. N₂ adsorption-desorption isotherms (a) and BJH desorption pore size distribution (b) of the silica foam.

150

100

0

50

200

Pore size (A^0)

250

300 350

20

25

30

35

⁵ Figure S4. SEM image (a) and size distribution (b) of the synthesized silica foam by adding 0.01 wt% of octyl phenol polyethylene oxide.