SUPPLEMENTARY INFORMATION

Epoxy Composites with Covalently Anchored Amino-Functionalized SWNTs:

Towards the Tailoring of Physical Properties through Targeted Functionalization

Jose M. González-Domínguez^a, Ana M. Díez-Pascual^b, Alejandro Ansón-Casaos^a, Marian A. Gómez-Fatou^b, M. Teresa Martínez^a*

^a Carbon Nanostructures and Nanotechnology group. Instituto de Carboquímica (ICB-

CSIC) Miguel Luesma Castan 4, 50018 Zaragoza, Spain

^bDepartment of Physics and Engineering, Institute of Polymer Science and Technology

(CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.

*Corresponding author Fax: +34976733977, email: mtmartinez@icb.csic.es

 Table S1: Pristine single-walled carbon nanotubes characterization

Sample	Metal (%) (TGA) ¹	T_0 (°C) (TGA) ¹	RBM range (cm⁻¹)	Diameter
			(Raman)	(nm)
				(Raman)
SWNT-asg	20	441.1	145-205	1.69-1.16

 1 Air atmosphere, from room temperature to 900 °C at a heating rate of 5 °C/min. T₀ corresponds to the temperature of maximum rate of weight loss.

² From the absorption spectrum in the Vis-NIR region. [AA(T)] Total area of the S_{22} band, [AA(S)] Area of the S_{22} band after baseline correction.^[1]

^[1] M. E. Itkis, D. E. Perea, S. Niyogi, S. M. Rickard, M. A. Hamon, B. Zhao, R. C. Haddon, *Nano Lett.* 2003, 3, 309.

Figure S1: Thermo gravimetric analysis curves for the epoxy nanocomposite material containing 0.5 wt% SWNT-dca, under air and nitrogen atmospheres

Sample	Functionalization	Experimental Procedure				
Nomenclature	reaction					
SWNT-oxa	Chemical oxidation followed by carboxylic activation and amidation	1) $HNO_3 1.5M / 2h reflux$ 2) $SOCl_2 / DMF 24h reflux$ 3) N-Boc-1,6-diaminohexane / DMF 90°C 72h 4) 1,4-dioxane / HCl (4%) Room T 2h (then NaOH)				
SWNT-nfp	Alkaline reduction and subsequent reaction with a diacyl peroxide	1) Na / Naphthalene / anhidrous THF (Ar) Room T 2) N-Fmoc-6-aminohexanoyl peroxide Room T (Ar) 3) Piperidine / DMF Room T 2h				
SWNT-dba	In situ formation and reaction with an aryl diazonium salt	4-aminobenzyl amine + isoamyl nitrite CH ₃ CN / DMF (1:1) 12h 60°C H ₂ N H ₂ N H ₂ N H ₂ N				
SWNT-dca	1,3-dipolar cycloaddition reaction of an azomethine ylide	1) N-Boc-ethyleneglycol-bis(2-aminoethylether)-N'-acetic acid Paraformaldehyde / DMF 5 days 115°C 2) 1,4-dioxane / HCl (4%) Room T 2h (then NaOH)				

Table S2: Reaction routes for the different amino-derivatizations applied to arc SWNTs

Table S3: Comparative chart between mechanical and thermomechanical properties from literature data and nanocomposites samples in the

present paper.

Ref.	Type of	Amine moiety	CNT	E' (25°C)	Present	T _g change*	Present	YM improvement*	Present	σ _y improvement*	Present Results**
	CNTs		loading	improvement*	Results**		Results**		Results**		
			(wt%)								
8	SWNTs	Aryl-NH ₂	0.5	24.6%	32.1% (SWNT-	-11.3°C	+7.3°C		•		•
					dba, 0.5 wt%)		(SWNT-dba,				
							0.5 wt%)				
6	SWNTs	CO-NH-R-NH ₂	1 and 4	~31.5% @ 1 wt%				30.5% @ 1 wt%	54.8% (SWNT-	25% @ 1 wt%	43% (SWNT-dba, 1
					44.3%				dba 1wt%)		wt%)
18	MWNTs	CO-NH-R-NH ₂	0.5 and 1	~25% @ 1wt%	(SWNT-dca, 1					~38.5% @ 0.5wt%	30% (SWNT-dba,
		Aryl-CO-NH-R-NH ₂		~44% @ 1wt%	wt%)					~30.8% @ 0.5wt%	0.5 wt%)
19 ^a	MWNTs	NH-(CH ₂ -CH ₂ -NH) _n -CH ₂ -CH ₃	1	~16.7%		~(-6°C)	+12.2°C				
22	MUNT		1			1890	(SWNT-dba, 1				
22	IVI VV IN I S	CO-Nn-K-Nn ₂	1			Tõ C	wt%)				
23	SWNTs	CO-NH-R-NH ₂	0.3			+2°C	+3°C (SWNT-	1			
_							nfp 0.1 wt%)				
24	MWNTs	CH(COOH)-CH ₂ -CO-NH-R-NH ₂	0.1 – 1			+11°C @ 1	+12.2°C			~45% @ 1wt%	43% (SWNT-dba, 1
						wt%	(SWNT-dba, 1				wt%)
							wt%)				
27	DWNTs ^b	NH ₂	0.1 – 0.5					14.9% @ 0.5 wt%	38.7%	8.35% @ 0.5 wt%	
	MWNTs	1						8.5% @ 0.5 wt%	(SWNT-dba,	0.27% @ 0.5 wt%	30% (SWNT-dba,
									0.5 wt%)		0.5 wt%)
28	DWNTs	NH ₂	0.1 – 1					~6.4% @ 1wt%	54.8% (SWNT-	~1.7% @ 1 wt%	43% (SWNT-dba, 1
									dba 1wt%)		wt%)
29	SWNTs	CO-NH-R-NH ₂	≤ 0.1							1.9% @ 0.1 wt%	5.2% (SWNT-dba,
											0.1 wt%)
30	MWNTs	CO-NH-R-NH ₂	0.25 - 0.75					~37.5% @ 0.5 wt%	38.7% (SWNT-	~30% @ 0.5 wt%	30% (SWNT-dba,
									dba, 0.5 wt%)		0.5 wt%)

31	SWNTs	NH-R-NH ₂	0.5	+10°C	+7.3°C	31.6%	38.7%	24.7%	30% (SWNT-dba,
					(SWNT-dba,		(SWNT-dba,		0.5 wt%)
					0.5 wt%)		0.5 wt%)		
32	MWNTs	R-CO-NH-R-NH ₂	0.1 – 2					~31.5% @ 1 wt%	43% (SWNT-dba, 1
									wt%)

* Referred to their respective baseline epoxy matrices

** Compared to the best results obtained for the epoxy composites in the present study, with respect to

the TGAP/DDS neat matrix. In parenthesis, the compared filler type and loading are specified.

^a Data on the baseline epoxy matrix was extracted from K. C. Etika, L. Liu, L. A. Hess, J. C. Grunlan, *Carbon* 2009, 47, 3128.

^b Double-walled carbon nanotubes