Supporting Information

for:

One-Step Solid-Phase Synthesis of Ultrasmall Homogeneous

Face-Centered Tetragonal FePt Nanoparticles Encapsulated in Thin

Carbon Shells

C.N. HE^{*} and N.Q. ZHAO^{*}

Figure S1. The diameter distribution of (a) 2.1 ± 0.4 nm, (b) 3.3 ± 0.6 nm and (c) 4.0 ± 0.7 nm

FePt@C nanoparticles determined by high-resolution TEM.

School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China. *Email: <u>cnhe08@tju.edu.cn</u>, <u>nqzhao@tju.edu.cn</u>.*

Figure S2. (a) (b) TEM and (c) HRTEM images of FePt@C nanoparticles prepared by using the molar ratio of metal to citric acid of 0.1, showing a very apparent core–shell nanostructure consisting of thick and ordered graphene layers with little amorphous carbon, (d) TEM image of a blank Cu grid dipped into the ethanol.

Figure S3. Photographs of (a) 3.3 ± 0.6 nm FePt@C nanoparticles and (b) FePt nanoparticles encapsulated in broken carbon shells in 10 M HCl solutions, (c) Typical TEM image of large area

of the discrete and homogenous 3.3 ± 0.6 nm FePt@C nanoparticles exposed to the air for 6 months, which shows that they have the same core-shell structure and almost the same size distribution as the nanoparticles just produced, indicating that these nanoparticles are very stable.

Figure S4. EDX spectra of (a) 2.1 ± 0.4 nm and (b) 3.3 ± 0.6 nm FePt@C nanoparticles, (c) EDX

spectra of a blank Cu grid dipped into the ethanol.

Sample	Fe : Pt atomic ratio[a]	Nanoparticle size (nm)
1	26 : 74	2.1 ± 0.4
2	45 : 55	3.3 ± 0.6
3	49:51	4.0 ± 0.7

Table S1. Influence of iron content on the nanoparticle size.

The atomic ratio of Fe to Pt was determined by inductively coupled ICP-AES.

Figure S5. Effect of (a) 2.1 ± 0.4 nm and (b) 3.3 ± 0.6 nm functionalized FePt@C nanoparticles on the viability of mouse macrophage and mouse L929 fibroblasts cells.

Figure S6. Magnetic hysteresis loops of the 3.3 ± 0.6 nm FePt nanoparticles exposed to the air for 6 months, showing that the coercivities and magnetizations are very close to the values of the nanoparticles just produced.