# **Electronic Supplementary Information**

### A theoretical discussion on the relationships among molecular

## packings, intermolecular interactions, and electron transport

## properties for naphthalene tetracarboxylic diimides derivatives

Yun Geng,<sup>a</sup> Shui-Xing Wu,<sup>a</sup> Hai-Bin Li,<sup>a</sup> Xiao-Dan Tang,<sup>a</sup> Yong Wu,<sup>a</sup> Zhong-Min Su,<sup>\* a</sup> and Yi Liao<sup>\*b</sup>

<sup>a</sup> Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Peoples' Republic of China.

<sup>b</sup> College of Chemistry, Capital Normal University, Beijing 100048, Peoples' Republic of China.

Author for correspondence: Prof. Zhong-Min Su, E-mail: zmsu@nenu.edu.cn;

Prof. Yi Liao, E-mail: liaoy271@nenu.edu.cn

#### Contents

| The site energy corrected method                                                           | (page S3)                 |
|--------------------------------------------------------------------------------------------|---------------------------|
| The electrostatic potential (ESP)                                                          | (page S3-S4)              |
| Table S1         The optimized geometries based on B3LYP/6-31G(d,p), compared              | with experimental         |
| values.                                                                                    | (page S4)                 |
| Fig. S1 The evolution of the electron transfer integrals as functions of the perp          | endicular distance        |
| ( <i>P</i> ).                                                                              | (page S5)                 |
| Fig. S2 The dimers A before and after optimization and the corresponding bond l            | abels. (page S6)          |
| Table S2 The monomer bond lengths $(Å)$ in dimer before and after optimization.            | (page S7)                 |
| Fig. S3 The convergences of total dimer energies during geometrical optimizat              | ion process for all       |
| dimers A.                                                                                  | (page S8)                 |
| Table S3 The relative orientations before and after optimizations for 1-3.                 | (page S8)                 |
| Fig. S4 Schematic description of the intramolecular reorganization energy                  | of compound 1             |
| calculated using different functionals.                                                    | (page S9)                 |
| <b>Fig. S5</b> The contributions of vibrations to the geometry relaxation for <b>1-3</b> . | (page S9)                 |
| Fig. S6 Band structures of three crystals.                                                 | (page S10-S11)            |
| Fig. S7 Illustration of projecting different hopping pathways to a transistor c            | channel in the <i>a-b</i> |
| plane of 1 crystal.                                                                        | (page S12)                |
| Fig. S8 Illustration of projecting different hopping pathways to a transistor c            | channel in the <i>a-b</i> |
| plane of <b>2</b> crystal.                                                                 | (page S12)                |
| Fig. S9 Illustration of projecting different hopping pathways to a transistor c            | channel in the <i>a-b</i> |
| plane of <b>3</b> crystal.                                                                 | (page S13)                |
| <b>Fig. S10</b> The electron mobility as a function of temperature for <b>1-3</b> . (page  | ge S13)                   |

#### The site energy corrected method

The site energy corrected method is used to calculate the effective electronic coupling and effective site energies from the spatial overlap integral  $S_{ij}$ , electronic coupling  $V_{ij}$  and site energies  $\mathcal{E}_{i(j)}$ ,

$$V_{12}^{eff} = \frac{V_{12} - \frac{1}{2} (\varepsilon_1 + \varepsilon_2) S_{12}}{1 - S_{12}^2}$$
(S1)

$$\varepsilon_{1(2)}^{eff} = \frac{1}{2} \frac{(\varepsilon_1 + \varepsilon_2) - 2V_{12}S_{12} \pm (\varepsilon_1 - \varepsilon_2)\sqrt{1 - S_{12}^2}}{1 - S_{12}^2}$$
(S2)

Assuming that H is the Hamiltonian of the dimer system and  $\psi_i$  and  $\psi_j$  are the highest occupied molecular orbitals (HOMO) of two monomers,  $S_{ij}$ ,  $V_{ij}$ , and  $\varepsilon_{i(j)}$  needed for the calculation of electronic coupling for p-type organic materials can be obtained from

$$S_{ij} = \left\langle \psi_i \middle| \psi_j \right\rangle \tag{S3}$$

$$\varepsilon_{i} = \left\langle \psi_{i} \left| \hat{H} \right| \psi_{i} \right\rangle \tag{S4}$$

$$V_{ij} = \left\langle \psi_i \left| \hat{H} \right| \psi_j \right\rangle \tag{S5}$$

#### The electrostatic potential (ESP)

The electrostatic potential can be defined in the gas-phase by the following expression:

$$V\left(\vec{r}\right) = \sum_{A} \frac{Z_{A}}{\left|\vec{r} - \vec{R}_{A}\right|} - \int \frac{\rho\left(\vec{r}'\right)}{\left|\vec{r} - \vec{r}'\right|} d\vec{r}'$$
(S6)

Where  $Z_A$  and  $\overline{R}_A$  are the charge and position of nucleus A, respectively, and  $\rho(\overline{r}')$  is the electron density at position  $\overline{r}'$ . The first term corresponds to the classical electrostatic potential of the nuclei and the second term corresponds to the quantum-mechanical electrostatic potential of the electrons. The ESP at a given point near a molecule is a measure of the electrostatic energy. A positive unit test charge would experience at that point. For instance, in Fig. 7 of manuscript, negative ESPs in blue correspond to an attractive interaction with this test charge, while positive ESPs in red indicate repulsion.

**Table S1** Bond lengths (Å), dihedral angles (°), the lowest unoccupied molecular orbital (LUMO) energy levels (eV), and adiabatic electron affinities (AEA eV) in full optimized geometries based on B3LYP/6-31G(d,p), compared with experimental values <sup>a</sup>.

|             | 1      |        | 2      | 2      |        | 3      |  |
|-------------|--------|--------|--------|--------|--------|--------|--|
|             | Cal.   | Exp.   | Cal.   | Exp.   | Cal.   | Exp.   |  |
| N1-C2       | 1.411  | 1.398  | 1.399  | 1.398  | 1.404  | 1.394  |  |
| C2-O3       | 1.219  | 1.213  | 1.219  | 1.219  | 1.215  | 1.174  |  |
| C2-C4       | 1.486  | 1.477  | 1.484  | 1.469  | 1.495  | 1.533  |  |
| C4-C5       | 1.416  | 1.390  | 1.417  | 1.422  | 1.427  | 1.451  |  |
| C4-C6       | 1.386  | 1.380  | 1.378  | 1.361  | 1.393  | 1.370  |  |
| C6-C7       | 1.407  | 1.402  | 1.409  | 1.399  | 1.429  | 1.421  |  |
| C7-C8       | 1.386  | 1.360  | 1.397  | 1.395  | 1.395  | 1.387  |  |
| C8-C9       | 1.416  | 1.425  | 1.428  | 1.436  | 1.429  | 1.444  |  |
| C5-C9       | 1.421  | 1.434  | 1.425  | 1.406  | 1.425  | 1.350  |  |
| C8-C10      | 1.486  | 1.490  | 1.494  | 1.493  | 1.498  | 1.509  |  |
| N1-C2-C4-C6 | -177.5 | -176.1 | -178.1 | -178.9 | -162.4 | -170.5 |  |
| LUMO        | -3.74  | -3.72  | -3.94  | -4.01  | -4.06  | -4.13  |  |
| AEA         | 2.44   |        | 2.71   | —      | 2.90   | —      |  |

<sup>a</sup> Data from ref [22].



Fig. S1 The definition of the perpendicular distance P (a) and the evolution of the electron transfer integrals as functions of P for the three simplified models cofacial dimers. There is no displacement both along the long axis and short axis.



**Fig. S2** The geometries of dimers *A* of **1-3** before and after optimization and the corresponding bond labels.

| 1  |                          | 2                        | 2                        | 3                        |                          |                          |
|----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|    | Bond length <sup>a</sup> | Bond length <sup>b</sup> | Bond length <sup>a</sup> | Bond length <sup>b</sup> | Bond length <sup>a</sup> | Bond length <sup>b</sup> |
| 1  | 1.338                    | 1.313                    | 1.341                    | 1.348                    | 1.341                    | 1.338                    |
| 2  | 1.552                    | 1.539                    | 1.551                    | 1.518                    | 1.552                    | 1.465                    |
| 3  | 1.357                    | 1.325                    | 1.357                    | 1.356                    | 1.360                    | 1.356                    |
| 4  | 1.546                    | 1.513                    | 1.549                    | 1.537                    | 1.550                    | 1.574                    |
| 5  | 1.365                    | 1.357                    | 1.364                    | 1.361                    | 1.363                    | 1.328                    |
| 6  | 1.527                    | 1.521                    | 1.526                    | 1.519                    | 1.524                    | 1.500                    |
| 7  | 1.461                    | 1.468                    | 1.462                    | 1.467                    | 1.465                    | 1.503                    |
| 8  | 1.415                    | 1.387                    | 1.403                    | 1.398                    | 1.405                    | 1.397                    |
| 9  | 1.217                    | 1.224                    | 1.217                    | 1.219                    | 1.213                    | 1.181                    |
| 10 | 1.485                    | 1.490                    | 1.486                    | 1.470                    | 1.495                    | 1.509                    |
| 11 | 1.418                    | 1.425                    | 1.419                    | 1.422                    | 1.428                    | 1.444                    |
| 12 | 1.387                    | 1.360                    | 1.379                    | 1.361                    | 1.397                    | 1.387                    |
| 13 | 1.408                    | 1.402                    | 1.413                    | 1.399                    | 1.733                    | 1.706                    |
| 14 | 1.387                    | 1.380                    | 1.739                    | 1.721                    | 1.430                    | 1.421                    |
| 15 | 1.422                    | 1.434                    | 1.398                    | 1.395                    | 1.734                    | 1.746                    |
| 16 | 1.417                    | 1.390                    | 1.428                    | 1.436                    | 1.394                    | 1.370                    |
| 17 | 1.485                    | 1.477                    | 1.426                    | 1.406                    | 1.426                    | 1.451                    |
| 18 | 1.218                    | 1.213                    | 1.494                    | 1.493                    | 1.426                    | 1.350                    |
| 19 | 1.412                    | 1.398                    | 1.213                    | 1.207                    | 1.493                    | 1.533                    |
| 20 |                          |                          | 1.421                    | 1.419                    | 1.212                    | 1.174                    |
| 21 |                          |                          |                          |                          | 1.406                    | 1.394                    |

 Table S2
 The monomer bond lengths (Å) in dimers before and after optimization.

<sup>a</sup> The bond lengths before optimization;

<sup>b</sup> The bond lengths after optimization.



**Fig. S3** The convergences of total dimer energies during geometrical optimization process for all dimers *A*. The total dimer energies before optimization are set to 0 eV.

|   | L (Å)  |       | X(A    | $X(\text{\AA})$ |  | $P(\text{\AA})$ |       | C-C (Å) |       |
|---|--------|-------|--------|-----------------|--|-----------------|-------|---------|-------|
|   | Before | After | Before | After           |  | Before          | After | Before  | After |
| 1 | 3.082  | 2.864 | 2.316  | 1.076           |  | 3.476           | 3.396 | 5.191   | 4.571 |
| 2 | 3.662  | 1.825 | 3.286  | 2.246           |  | 3.318           | 3.473 | 5.935   | 4.521 |
| 3 | 1.511  | 1.263 | 3.648  | 2.998           |  | 3.233           | 3.402 | 5.104   | 4.707 |

**Table S3** The relative orientations before and after optimizations for  $1-3^a$ .

<sup>a</sup> The C-C values refer to centroid to centroid distances, P is the perpendicular distance between the two NDI core planes, L refers to the displacement along the molecular long axis, and X is the displacement along the short axis.



**Fig. S4** Schematic description of the intramolecular reorganization energy of compound **1** calculated using different functionals, BLYP, B3LYP, B $\lambda$ LYP, and BH&HLYP with the same basis set 6-31G(d,p).



Fig S5 The contributions of vibrations to the geometry relaxation for 1-3.



**Fig S6** Band structures of three crystals: (a) **1** (Triclinic space group  $P\overline{I}$ , a = 5.191 Å, b = 10.146 Å, c = 11.599 Å, and  $\alpha = 66.69^{\circ}$ ,  $\beta = 79.06^{\circ}$ ,  $\gamma = 89.12^{\circ}$ ), (b) **2** (Monoclinic space group  $P2_1/c$ , a = 11.870 Å, b = 16.633 Å, c = 5.935 Å, and  $\alpha = \gamma = 90^{\circ}$ ,  $\beta = 110.90^{\circ}$ ), and (c) **3** (Triclinic space group  $P\overline{I}$ , a = 5.104 Å, b = 10.358 Å, c = 12.395 Å,  $\alpha = 111.08^{\circ}$ ,  $\beta = 90.07^{\circ}$ ,  $\gamma = 96.67^{\circ}$ ,). The energies are plotted along directions in the first Brillouin zone connecting the point:  $\Gamma = (0, 0, 0)$ ,

X = (0.5, 0, 0), Y = (0, 0.5, 0), Z = (0, 0, 0.5), T = (0, 0.5, 0.5), V = (0.5, 0.5, 0), U = (0.5, 0, 0.5)and R = (0.5, 0.5, 0.5) for the band structure of **1**;  $\Gamma = (0, 0, 0), B = (0.5, 0, 0), Y = (0, 0.5, 0), Z = (0, 0, 0.5), A = (0.5, 0.5, 0), C = (0, 0.5, 0.5), D = (0.5, 0, 0.5)$  and E = (0.5, 0.5, 0.5, 0.5) for the band structure of **2**;  $\Gamma = (0, 0, 0), X = (0.5, 0, 0), Y = (0, 0.5, 0), Z = (0, 0, 0.5), T = (0, 0.5, 0.5), V = (0.5, 0.5), O = (0.5, 0.5), O = (0.5, 0.5), C = (0, 0.5, 0.5), C = (0, 0.5, 0.5), D = (0.5, 0.5), C = (0, 0.5, 0.5), D = (0.5, 0.5), C = (0, 0.5, 0.5), C = (0, 0.5, 0.5), D = (0.5, 0.5), C = (0, 0.5, 0.5), D = (0.5, 0.5), C = (0, 0.5, 0.5), C = (0, 0.5,$ 



**Fig. S7** Illustration of projecting different hopping pathways to a transistor channel in the *a-b* plane of **1** crystal;  $\theta_P$ ,  $\theta_{T1}$ ,  $\theta_{T2}$  and  $\theta_{T3}$  are the angles of *P*,  $T_1$ ,  $T_2$ , and  $T_3$  dimers relative to the reference crystallographic axis *a* (*L* dimer is also shown);  $\Phi$  is the angle of a transistor channel relative to the reference crystallographic axis *a*.



**Fig. S8** Illustration of projecting different hopping pathways to a transistor channel in the *b-c* plane of **2** crystal;  $\theta_P$ ,  $\theta_{T1}$ , and  $\theta_{T2}$  are the angles of *P*,  $T_1$ , and  $T_2$  dimers relative to the reference crystallographic axis *c* (*L* dimer is also shown);  $\Phi$  is the angle of a transistor channel relative to the reference crystallographic axis *c*.



**Fig. S9** Illustration of projecting different hopping pathways to a transistor channel in the *a-b* plane of a **3** crystal;  $\theta_P$ ,  $\theta_{T1}$ ,  $\theta_{T2}$  and  $\theta_{T3}$  are the angles of *P*,  $T_1$ ,  $T_2$ , and  $T_3$  dimers relative to the reference crystallographic axis *a* (*L* dimer is also shown);  $\Phi$  is the angle of a transistor channel relative to the reference crystallographic axis *a*.



Fig. S10 The electron mobility as a function of temperature for 1-3.