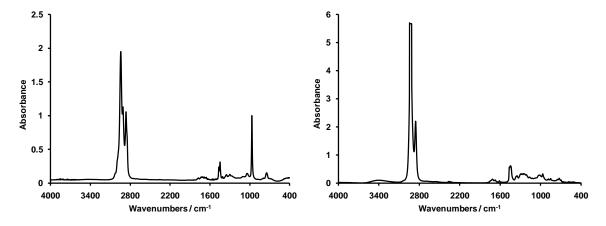
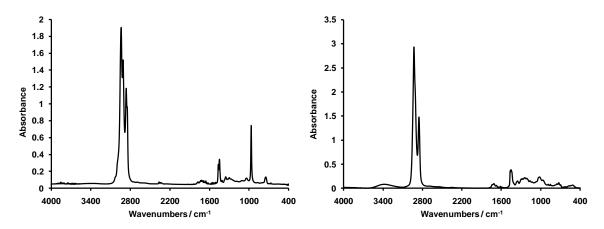
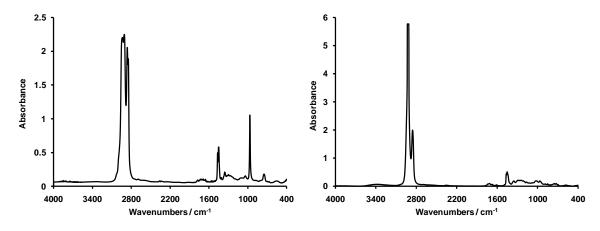

Supporting Information


Low Loss Photopatternable Matrix Materials for LWIR-Metamaterial Applications

Roger D. Rasberry, ¹ Yun-Ju Lee, ² James C. Ginn, ^{3,4} Paul F. Hines, ⁵ Christian L. Arrington, ⁶ Andrea E. Sanchez, ¹ Michael T. Brumbach, ⁷ Paul G. Clem, ⁸ David W. Peters, ³ Michael B. Sinclair, ² and Shawn M. Dirk¹,*


¹Organic Materials Department, ²Electronic Materials and Nanostructures Department, ³Applied Photonic Microsystems Department, ⁴Center for Integrated Nanotechnologies, ⁵Integrated Microdevice Systems Department, ⁶Photonic Microsystems Technologies Department, ⁷Materials Characterization Department, and ⁸Direct Write Technology Group, Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185, United States


Figure S1. IR spectra for polynorbornene taken from free-standing films (20-25 μ m) before (left) and after cross-linking (right).

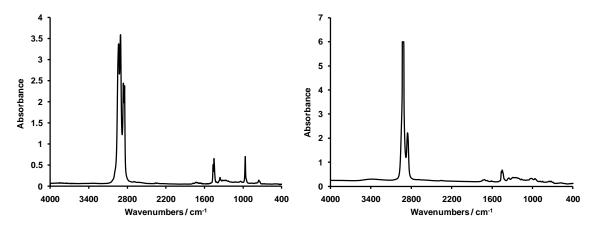

Figure S2. IR spectra for partially hydrogenated polynorbornene (18.2%) taken from free-standing films (20-25 μm) before (left) and after cross-linking (right).

Figure S3. IR spectra for partially hydrogenated polynorbornene (41%) taken from free-standing films (20-25 μ m) before (left) and after cross-linking (right).

Figure S4. IR spectra for partially hydrogenated polynorbornene (55.9%) taken from free-standing films (20-25 μ m) before (left) and after cross-linking (right).

Figure S5. IR spectra for partially hydrogenated polynorbornene (72.4%) taken from free-standing films (20-25 μ m) before (left) and after cross-linking (right).