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Electronic Structure Calculations of Semiconducting Nanostructures

In the main body of the manuscript we discussed the direct, inverse, and synergistic predictive theory-
experiment approaches used to link structure and property of semiconducting nanostructures. The underly-
ing assumption behind all three approaches is that the employed theoretical model linking the structure and
property, is sophisticated enough to handle nano systems of few thousands up to hundred of thousands of
atoms including excitations and many-body effects. A model for electronic structure calculation should use
as an input realistic geometry and composition profile, presumably extracted from structural characteriza-
tion measurements, and take into account all of the relevant effects, including the strain and piezoelectric
effects (if present),1,2 and external magnetic3–5 and electric fields.6

Fig. A Flowchart of the methodology used for electronic structure calculations of semiconductor nanostructures.

Ideally, the electronic structure of nanostructures should be calculated from the atomistic first-principles,
e.g., Hartree Fock, Density Functional Theory, GW, but those methods are limited to systems with couple
of hundreds of atoms. Modeling of nanostructures containing thousands up to hundred thousands or even
several millions, requires empirical methods with input from experiment, e.g. effective masses, band gaps,
deformation potentials. Several such empirical methods have been employed ranking from empirical atom-
istic, tight-binding7,8 and pseudopotentials,9–12 to continuum, envelope function,3,4,13–18 models.

The flowchart of the methodology typically used for electronic structure calculations of semiconductor
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nanostructures is shown in Figure A. First, the model structure is defined, typically using available exper-
imental data [Sec. 1]. Next, the strain distribution in and around such a model nanostructure is calculated
[Sec. 2]. Then, the single particle states are calculated [Sec. 3]. The nature of many-particle interaction,
including the electron-hole Coulomb effects, electron-hole exchange interaction, or correlations can be
extracted from configuration-interaction calculations as explained in Sec. 4. Finally, the output of CI calcu-
lations is used in different post-processing tools, depending on the problem [Sec. 6 of ESI]. For example,
this includes the calculation of the multiexcitonic emission spectra,19–21 fine structure splittings of exciton
complexes,12,22 energy transfer for semiconductor nanocrystals,23 charging energies, entanglement6,24 to
name just a few.

Methods for the electronic structure calculations of nanostructures were originally developed and applied
to bulk materials. Thus, in what follows, we first review those methods as they were implemented for bulk
and then discuss details of how a particular methodology was applied to nanostructures. We also address a
gauge invariant implementation of magnetic field effects for nanostructures.

1 Model Structure

A model nanostructure is defined through its geometry and composition profile. Typically, the geometry
and composition profile are extracted from structural characterization measurements. For the effective mass
models, the structure is typically defined on a three-dimensional rectangular grid, where each and every
node of the grid contains information about material forming nanostructure.4,13,25,26 Potentials, effective
masses, are constructed from this “structural grid”. For atomistic models, initially the atoms are placed on
a regular grid. For example, for InxGa1−xAs alloy, the Ncat cation sites are randomly populated by In or Ga
atoms so that overall composition is x=X(In).12

If there is a lack of structural characterization data on the nanostructure, the geometry and compo-
sition profile are assumed, taking into account other available experimental data, such as photolumines-
cence (PL).For example, if there are available PL data, performed on an ensemble of semiconductor self-
assembled quantum dots (QDs), the information about the individual properties, both structural and optical,
of the QDs are lost, and model QD is actually as a representative of the ensemble of QDs.

2 Strain Minimization

If the nanostructure is strained, strain minimization of the model structure is performed next. Here we
discuss the isotropic-elasticity (IE),27 continuum elasticity (CE),2,28 and valence force field (VFF) mod-
els.29,30

The strain distribution is calculated under the assumption that a nanostructure is already formed. The
nanostructure made of one material is embedded in a surrounding material with different lattice constant.
The elastic energy of such a system is minimized giving as a result the components of the strain tensor.
It is clear that size, shape, composition profile as well as the growth on high index planes influence sig-
nificantly the strain distribution.31 Elastic constants that characterize the constituent materials forming the
nanostructure, have values extracted from experiment, and enter the calculations regardless of the employed
model.

Interestingly, the link with the experiment can be established at this step. Namely, it is possible to extract
strain components from high resolution transmission electron microscopy (HRTEM) images of the sample,
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enabling a comparison between calculated components of the strain tensor and strain components extracted
from these HRTEM images.32–35

2.1 Isotropic Model:

Isotropy-elasticity (IE) model was proposed by Davies27 and is based on the Eshelby’s theory of inclu-
sions36. It was shown that the elastic field may be derived from a scalar potential that obeys a Poisson
equation with the lattice mismatch as charge density. The displacement was made analogous to the electric
field providing a simple way to visualize the distortion around a nanostructure.

2.2 Continuum Elasticity:

In the continuum elasticity model,2,28 the functional form of the elastic energy is minimized in order to
obtain the distribution of the displacement in the structure, where from the strain is extracted.

The total elastic strain energy ECE for a semiconductor material is given by:2,28

ECE =
∫ 1

2
Ci jkl[ei j(r)− e0

i j(r)][ekl(r)− e0
kl(r)]dV , (1)

where Ci jkl is the elastic modulus tensor, ei j(r) is the strain tensor, and e(0)i j (r) is the local intrinsic strain
induced by changes in the lattice constant; ijkl run over the coordinate system.

For a cubic system, assuming abrupt interfacesbetween a nanostructure and barrier material, that the
coordinates are fixed to the barrier material, and treat the nanostructure as expanded barrier materials with
different elastic constants, the total elastic energy is given

ECE =
∫ 1

2
[C11(e2

xx(r)+ e2
yy(r)+ e2

zz(r))+C12(exx(r)eyy(r)+ exx(r)ezz(r)+ eyy(r)ezz(r))

+ 2C44(e2
xy(r)+ e2

yz(r)+ e2
xz(r))−2αe0(exx(r)+ eyy(r)+ ezz(r))+3αe2

0]dV , (2)

Where

e0 =

{
(anano −abarrier)/abarrier inside the structure,
0 in the barrier. (3)

α =

{
1
2Cxxxx +Cxxyy inside the structure,
0 in the barrier.

(4)

The components of the strain tensor are computed directly from the three components of the displace-
ment vector u which minimizes ECE :

ei j(r) =
1
2
(
∂ui(r)

∂ r j
+

∂u j(r)
∂ ri

) (5)

The components of the strain tensor are calculated directly from the displacement u that minimizes the
action integral for the strain tensor.1,2,28 The displacements are typically discretized at the nodes of the
grid representing their first derivatives by finite differences. The first derivative is averaged over the eight
permutations of forward and backward differences.2,28 Details of numerical implementations can be found
elsewhere.1,2,4,28
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2.3 Valence Force Field:

In the the valence force field (VFF) model,29,30 the strain energy is expressed as a sum of the potential
energies located in atomic bonds. The total VFF strain energy is calculated as the sum of the local strain
energies over all atoms:2

EV FF = ∑
i

E(i)
V FF = ∑

i j
V2(Ri −Rj)+∑

i jk
V3(Θ̂i jk)+ ... (6)

where V2 is a two-body term, and V3 is a three-body function of the bond angle (Θ̂i jk).
Taking only two- and three-body terms in Eq. (6), the VFF elastic energy is given by:

EV FF = ∑
i j

V2(Ri −Rj)+∑
i jk

V3(Θ̂i jk) = ∑
i

nni

∑
j

3α(1)
i j

8
∆d2

i j

+ ∑
i

nni

∑
j,k> j

3β jik

8d0
i jd

0
ik
[(Rj −Ri) · (Rk −Ri)− cosθ 0

jikd0
i jd

0
ik]

2 (7)

where ∆d2
i j = [((Ri−Rj)

2−(d0
i j)

2)/d0
i j]

2, d0
i j is the ideal bond distance between the atoms i and j, θ 0

jik is the
ideal angle of the bond angle j− i− k. The ∑nni denotes summation over the nearest neighbors of atom i.
The local-environment-dependent coefficients, α(1)

i j and β jik, bond-stretching and bond-bending distortions
in bulk zinc-blende materials, respectively, are fitted to the elastic constants of bulk materials:

C11 +2C12 =

√
3

4di j
(3αi j +βi j)

C11 −C12 =

√
3

4di j
βi j

C44 =

√
3

4di j

4αi jβi j

αi jβi j
(8)

These expressions do not account for Coulomb effects caused by the unequal charge distribution between
the anion and cation sublattices in zinc-blende materials.7 Neglecting the Coulomb correction causes slight
deviation from the measured bulk properties.

The total strain energy including bond bending, bond stretching, and bond bending-bond stretching
interactions is given by:11

EV FF = ∑
i

nni

∑
j

3
8
[α(1)

i j ∆d2
i j +α(2)

i j ∆d3
i j]+∑

i

nni

∑
j,k> j

3β jik

8d0
i jd

0
ik
[(Rj −Ri) · (Rk −Ri)− cosθ 0

jikd0
i jd

0
ik]

2

+ ∑
i

nni

∑
j,k> j

3σ jik

d0
ik

∆di j[(Rj −Ri) · (Rk −Ri)− cosθ 0
jikd0

i jd
0
ik] (9)

The second-order bond stretching coefficient α(2) is related to the pressure derivative of the Young’s
modulus d((C11 +2C12)/3)/dP.
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The atomic positions {Ri} within the supercell are relaxed in order to determine the strain. The relaxed
atomic configuration could be obtained, for example by conjugate gradient minimization of EV FF with
respect to the atomic positions.2

2.4 Discussion:

All discussed models are based on the elastic constants of the underlying bulk materials. However, the IE
and CE models belong to continuum approaches, thus (i) they are not able to describe the strain at the level
of the crystal unit cell, (ii) the large strains that exist between lattice-mismatched III-V semiconductors
bring the CE outside the linearity regime,2,11 and (iii) they ”see” the geometrical symmetry rather than the
real point group symmetry of the nanosystem.2,37

3 Single Particle States

As the next step in the modeling, the single particle states are calculated. We discuss the main features
of commonly used single- and multi-band effective mass, tight binding, and empirical pseudopotential
methods. They are parameterized by a set of experimentally obtained band structure parameters from the
bulk material. If measurements on a nanostructure are performed in external electric or magnetic field, these
external field effects enter the calculations at this step.

3.1 Effective-Mass Theory:

The effective-mass theory is a very well established method to obtain the band structure in the case of weak
perturbing inhomogeneous semiconductor potentials.38–42 Electron and hole energies near the band extrema
in the presence of external magnetic and electric fields and in a crystal containing a shallow impurity were
successfully described by this theory.5,39,40,43

The basic idea behind the effective mass theory is actually rather simple:5 Near the band edges the elec-
trons can be described to behave as if they are in free space except their masses taking some effective value
m∗. The electron states are described by a single Schrödinger equation around the given point of the Bril-
louin zone, assuming the (conduction) band parabolic.∗ The physical accuracy of this simple effective mass
approach decreases as one wanders away from the high symmetry points since the band non-parabolicity
originating from band mixing, or inter-valley mixing, starts to be important.

In the framework of the effective-mass approach, this limitation was overcome by employing the model
referred to as k·p theory.39,40,43 It is based on selecting a few 3D-periodic Bloch orbitals taken from the
Brillouin zone center which single particle wavefunctions are expanded in. The most studied is the structure
description around the Γ point. In k·p theory, the coupling between the bands of interest (set A) and all
other bands (set B) is reduced to zero whereas the coupling between the bands of interest was not affected
by this transformation. At the same time the effective masses in the bands of interest are renormalized to
take into account the influence of the bands in set B (Löwdin renormalization44). Next, a fitting procedure
is used to obtain the effective-mass parameters.43

Depending on the analyzed system, the number of bands in the set A can vary from four up to thirty.
Namely, 4×4 k·p model includes only heavy holes and light hole bands,† and is used when the energy gap
and split-off energy are large enough so band mixing between heavy or light hole and the conduction band

∗Strictly speaking such a picture is valid only at the high symmetry points of the Brillouin zone.
† Due to the spin, one ends up with four bands.
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and split-off band can be neglected. For example, such a model has been employed to describe confined
electron and hole energy levels in GaAs/(Al,Ga)As QDs with parabolic in-plane potential and step like
potential in the growth direction.45 Furthermore, to take into account the split-off band in materials with
small split-off energy, basis set A was extended to include the split-off band, resulting in the 6×6 k·p model.
In this case, it is assumed that the energy gap is large enough so the band mixing between valence band
states and lowest laying conduction band can be neglected. For example, this model was used to investigate
the electronic structure of InP/(In,Ga)P quantum dots and molecules.46,47 In the case of materials with
narrow band gap, e.g., InAs, the lowest lying conduction band has to be added to the set A, resulting in
the 8×8 k·p model. Further extension of the basis set are possible, resulting in the 14×14,48,49 or even
30×30 k·p models.15,50 Clearly, adding more bands, extends the validity of a effective mass model further
from the zone center, so that 30×30 k·p model gives the description of the whole Brillouin zone.50 Going
beyond 8×8 k·p model is necessary for indirect gap materials, such as AlAs, or Si. For example, Si/Ge
QW and QDs have been successfully investigated in the framework of 30 band k·p theory.15

Derivation of the model for bulk – As we have already mentioned, a loosely bound outer shell electron in a
semiconductor crystal can be best described by a particle traveling in a slowly varying periodic potential.
The one electron Schrödinger equation is:5

(
p2

2m0
+V (r)+ Ĥso)Ψk(r) = EkΨk(r) , (10)

where the first, second, and third term on the left-hand side correspond to the kinetic energy of the electron,
the periodic crystal potential, and spin-orbit interaction respectively. The spin-orbit interaction, Ĥso, is
given by:

Ĥso =
h̄

4m2
0c2 (∇V ×p) ·σ +

h̄
4m2

0c2 (∇V ×k) ·σ , (11)

where σ is the Pauli operator. The main contribution to the spin orbit interaction comes from the core region
of the atom where ∇V and p are very large (the first term on right-hand side of Eq. 11), whereas the second
term is usually neglected since k is at most 1/2 a reciprocal lattice vector and hence small compared to p.

The Bloch function is given by:
Ψk(r) = exp(ikr)unk(r) . (12)

where unk(r) has the periodicity of V(r), k lies in the first Brillouin zone, and n is the band index.
Substituting Eq. (12) into Eq. (10) gives:40

[
p2

2m0
+V (r)+

h2k2

2m0
+

h̄
m0

k ·p+
h̄

4m2
0c2 (∇V ×p) ·σ ]unk(r) = En(k)unk(r) , (13)

This approach leads to the k·p approximation named after the 4th term appearing in the Hamiltonian
of Eq. (13). For fixed value k = k0, Eq. (13) has a complete set of eigenfunctions unk0(r) which com-
pletely span the space of functions periodic in the real space Bravais lattice. This set of states is called k·p
representation.5,40

We use Γ point (k0 = 0) as the basis for a k·p representation‡ and theoretically the entire zone can be
covered. For example, 15 bands (30 including spin-orbit interaction) can give the description of the whole
Brillouin zone.50

‡ Γ point is the most suitable to use as a basis, since it is also the point of highest symmetry in the zone.
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One can write unk(r) in terms of unk0(r):

unk(r) =
N

∑
n′=1

cn′nun′k0(r) , (14)

where N is the number of bands used in the expansion.
Substituting Eq. (14) into Eq. (13), then multiplying Eq. (13) on the left by unk0 , and finally performing

the integration over the unit cell gives the k0·p representation:

N

∑
n′
{[En(k0)+

h2(k2 − k2
0)

2m0
]δnn′ +

h̄
m0

(k−k0) · ⟨unk0|p|un′k0⟩+

+
h̄

4m2
0c2 ⟨unk0|(∇V ×p) ·σ |un′k0⟩}cn′n = En(k)cnn . (15)

If we focus on the region of the conduction and valence band extrema where most carriers sit (around
the Γ point). The topmost valence states and the lowest-lying conduction band are close together and well
separated from all other band edges. This fact enables division of all states into two sets: set A containing
the bands of interest (in our case, the lowest lying conduction band and three topmost valence states) and set
B containing remaining bands that have non-negligible effect on the states in A. The interactions between A
and B are removed, whereas interactions in A are perturbatively renormalized to account for the influence
of the bands in set B.5,44

Let us first consider the case without the spin-orbit interaction. The valence band maximum is derived
from atomic p functions, X, Y, Z, which remain degenerate under the tetrahedral point group of the zinc-
blende lattice to give the representation Γ15. The conduction band is derived from S functions which give the
tetrahedral representation Γ1. Therefore, Eq. (14) written in the matrix form for N=4, where the influence
of all bands outside s,p subspace is included perturbatively, has the following form:

H4 =


De Bkykz + iPkx Bkxkz + iPky Bkxky + iPkz

Bkykz − iPkx Dh1 −N′kxky −N′kxkz
Bkxkz − iPky −N′kxky Dh2 −N′kykz
Bkxky − iPkz −N′kxkz −N′kykz Dh3

 , (16)

Here, De = Ec +Ack2, Dh1 = Ev − L′k2
x −M(k2

y + k2
z ), Dh2 = Ev − L′k2

y −M(k2
x + k2

z ), Dh3 = Ev − L′k2
z −

M(k2
x + k2

y), Ec denotes the energy of the conduction band minimum, and Ev is the energy of the valence
band maximum. P is the Kane matrix element defined as P =−i(h̄/m)⟨S|px|X⟩ and B arises because of the
inversion asymmetry of zinc-blende semiconductors. The number of independent parameters in Eq. (16)
comes from the symmetry arguments.39,41,42 The parameters P, Ec, Ev come from the direct interaction
between s and p wavefunctions, whereas Ac, B, L′, M, N′ result from the second order interactions due
to the Löwdin perturbation44 involving the states outside s-p subspace. Ac is the electron effective mass
renormalized to include influence of remote bands. B has a finite value in zinc-blende semiconductors, but
parameter B is usually neglected.26 In what follows we shall assume the inversion symmetry of the system
(B=0). L′, M, N′ can be expressed in the terms of scaled39 parameters γi, where i=1,2,3:

L′ = (h̄2/2m)(γ1 +4γ2) ,

M = (h̄2/2m)(γ1 −2γ2) ,

N′ = (h̄2/2m)(6γ3) ,

(17)
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where m is the electron mass. Parameters γi were first introduced by Luttinger to represent the second
order interactions involving the states outside p subspace.39 In our case, in which the conduction band
is treated together with the valence bands i.e. s-p subspace, the Luttinger parameters have to be scaled
to remove perturbative interaction with the lowest lying conduction band. Scaled Luttinger parameters are
connected to the valence-band Luttinger parameters by the relations:43 γ1 = γL

1 −EP/3Eg, γ2 = γL
2 −EP/6Eg,

γ3 = γL
3 −EP/6Eg, where Eg is the fundamental band gap, and EP is related to the Kane matrix element by

EP = 2mP2/h̄2.
Luttinger parameters can be written in a manner which explicitly reveals the contribution of all other

states of symmetry Γ1, Γ15, Γ12, or Γ25.51 This states are compatible with the s, p, d, and f orbitals re-
spectively. The contribution of Γ25 symmetry is neglected here.§ The Luttinger parameters can be written
as:51

γ1 =−1+2σ +4π +4δ ,

γ2 = σ −π +2δ ,

γ3 = σ +π −δ , (18)

where σ , π , and δ are defined by:

σ = (1/3m)∑Γ1
j |⟨X |px|u j⟩|2/(E j −Ev)−EP/6Eg ,

π = (1/3m)∑Γ15
j |⟨X |py|u j⟩|2/(E j −Ev) ,

δ = (1/6m)∑Γ12
j |⟨X |px|u j⟩|2/(E j −Ev) .

(19)

m is the free electron mass, p is the momentum operator, and Ev is the valence band energy in the absence
of spin orbit interaction. The sum is over the basis states u j of all remote bands of a given symmetry. Note
that from the sum that goes over basis states of the Γ1 symmetry (σ term in Eq. (19)) the lowest-lying
conduction band is subtracted (second term of right-hand side of expression for σ ) since the interaction
between the lowest-lying conduction band and three topmost valence bands is already explicitly treated in
our model.¶

When the spin-orbit interaction is included, the same s-p subspace is used but also the spin degree of
freedom is taken into account. As a consequence we have eight states instead of four. The spin-orbit in-
teraction splits the Γ15 states forming irreducible representations Γ8 and Γ7. Namely, coupling of angular
momentum with the spin gives two possible values of total angular momentum (j=3/2 and j=1/2). The four
states |3/2, jz⟩ form the irreducible representation Γ8, whereas two |1/2, jz⟩ form the irreducible represen-
tation Γ7.

Spin-orbit interaction may be represented by the single parameter, ∆, which is the spin-orbit splitting of
the p states:

∆ =−3i(
h̄

4m2
oc2 )⟨X |∇V ×p|Z⟩ . (20)

It is most convenient to work with eigenfunctions of the total angular momentum | j, jz⟩ which diagonal-
ize spin-orbit interaction.∥ The explicit form of the eight-band model can be found elsewhere.3,5

§ Contribution of f orbitals to the valence electronic structure of semiconductors is insignificant, and therefore usually neglected. 51

¶ The lowest-lying conduction band belongs to the set A.
∥The proper linear combinations of p functions and spin functions are taken to diagonalize the spin orbit interaction. 38,39
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For completeness, let us add that if the crystal structure has inversion symmetry the bands are double
degenerate with respect to spin (Kramers theorem). In the theoretical description of zinc-blende semicon-
ductors, such as GaAs, InAs, AlAs etc. it is assumed that inversion symmetry is approximately satisfied
due to the small difference in the constituent atoms.

Presence of weak perturbing inhomogeneous semiconductor potentials leads to the introduction of the
envelope function.38,39 It means that detailed wavefunction is split into slow varying (envelope part) Fn(r)
and the cell periodic and more oscillatory Bloch functions unk(r) satisfying the Schrödinger’s equation with
band-edge energies:

Ψ(r) = Fn(r)unk(r) . (21)

Application to Nanostructures – Due to its simplicity, easy implementation of the strain effects, effects of an
applied magnetic field, or growth on high index surfaces, the multi-band effective theory has been widely
accepted as a reasonably good theoretical tool for the electronic structure description of semiconductor
nanostructures. It has been proven to give a remarkable good agreement with the experimental data when
employed to nanostructures, ranging from quantum wells to QDs, or recently to quantum rings.

When applied to nanostructure, the effective-mass parameters present in the multi-band model become
spatially dependent, commonly varying abruptly through the interface between the nanostructure and the
surrounding barrier material. Application of the multi-band Hamiltonian to a nanostructure can be under-
stood as an application of the multi-band Hamiltonian, as in the bulk case, for the nanostructure (one bulk
material), and the second application for the barrier material (second bulk material). Boundary conditions
are then applied to connect solutions from both sides of the interface. Also, it is assumed for all constituent
materials to have the identical Γ point. In general, such a Hamiltonian does not have to be Hermitian, and
its Hermiticity actually depends on the choice of the boundary conditions at the heterointerface of a nanos-
tructure. Although clear from above, we stress here that the validity of the effective mass approximation is
broken when applied to nanostructures, since the condition of the weak perturbing potential is violated at
the heterointerface. Indeed, the arbitrariness in the choice of the boundary conditions, as well as an unjus-
tified application of the effective mass theory to abruptly varying potentials (beyond the valid range of the
model) are the main week points of this approach.

Several approaches for electronic structure calculations of semiconductor nanostructures were put for-
ward, that can be divided into three groups: (i) First one is based on the matching of bulk solutions across an
interface, as we mentioned above, and the generalization of the bulk equation to the case of spatially varying
composition.52 This approach has been widely accepted in the literature and no unexpected or nonphysi-
cal behavior of the calculated electronic spectra of any of the modeled nanostructures has been reported.
The main weakness of this approach is the absence of the possibility to trace and estimate errors coming
from the employed boundary conditions, since they were ad hoc introduced only taking care about the Her-
miticity of the Hamiltonian;3 (ii) Second approach is based on the development of the envelope function
approach for nanostructures, with an intention to resolve both, the boundary condition problem as well
as the validity of the effective-mass approach when applied to nanostructures.53,54 Namely, the envelope
function expansion with zone-center eigenfunctions was applied to an entire nanostructure∗∗ making the
envelope functions unique and circumventing the boundary condition problem. The later is simply resolved
by the fact that envelope functions are smooth and continuous everywhere for well behaved wavefunctions,
even at the abrupt interface.†† From the practical point of view, the multiband Hamiltonian developed in
the framework of Burt’s approach differs from the one discussed under (i) in the additional terms arising

∗∗The same Un(R) are used throughout even though there are regions where they are not eigenstates of the local Hamiltonian.
†† The limited range of wavevectors is used in their plane expansion
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because of the abrupt variation of the effective-mass parameters at the interface of the heterostructure. Such
a Hamiltonian was first developed by Foreman,51 and this approach is usually referred to as Burt-Foreman
approach. It is worth mentioning, that all simplicity of the conventional approach with respect to the mod-
eling of strain in nanostructures, effects of an external fields, growth on high index surfaces is preserved
in this approach as well. Strain effects are incorporated in an adiabatic manner, as discussed in previous
section, where the part of the inhomogeneity effects on the bandstructure is accounted for through the terms
coupling the conduction and valence bands;55 and (iii) The third approach was proposed by Foreman56 and
is based on a new first-principle envelope-function theory that includes all non-zero, first-principle derived
terms.57,58 The envelope functions are formulated in terms of atoms rather than bulk compounds, whereas a
traditional bulk-crystal description can be obtained from the atomistic formulation via linear transformation
of variables.

3.2 Tight-Binding method:

In the tight-binding method (TBM) the electronic states are considered to be linear combinations of atomic
(s,p,d,...) orbitals.59 The Hamiltonian matrix elements between the atomic orbital states are introduced
as free parameters to be determined by fitting the band gaps and band curvatures, i.e., effective masses
at critical points in the Brillouin zone.60 ‡‡ The basis functions do not need to be explicitly evaluated,
as the only information required to find the electronic structure of the system is the Hamiltonian matrix
elements. They are written in the parametrized form, and the whole system is described by a parametrization
scheme.61

Derivation of the model for bulk – Let us denote an atomic orbital located on an atom at Ri as ϕi,α(r−Ri).
The atomic orbitals on different atomic sites are not orthogonal to one another. The orthogonal set can
be created from the original set of atomic orbitals preserving its symmetry properties, using the Löwding
scheme:62

ψiα = ∑
i′,α ′

S−1/2
iαi′α ′ϕi′α ′ (22)

where S is the overlap matrix.
For periodic systems, such as crystals, the Bloch sum is used to obtain the electronic structure. Starting

from the orthogonal set in Eq. (22), the Bloch sum is taken over all the periodic images of this orbital:61

N−1/2 ∑
Ri

eik·Riψiα(r−Ri) (23)

Next, the Hamiltonian matrix elements are evaluated as a function of k using the sums given in Eq. (23)
as a set of basis functions:

Hiα jβ = N−1 ∑
Ri,R j

eik·(Rj−Ri)×
∫

ψ∗
iα(r−Ri)Hψ jβ (r−Rj)dr (24)

One of the two sums in Eq. (24) can be canceled with the factor N−1, giving the sum over the periodic
images of the two atomic sites:

‡‡ Depending on the number of orbitals and nearest neighbors used to represent the states, the TBM requires for the overlap integrals to be determined in terms of
the measured direct and indirect band gaps and/or effective masses in the bulk material.
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Hiα jβ = ∑
R j

eik·(Rj−Ri)×
∫

ψ∗
iα(r−Ri)Hψ jβ (r−Rj)dr (25)

We then apply the two-center approximation. In essence, the potential part of the Hamiltonian is replaced
by the potential due to only the two atoms upon which the orbitals are located, neglecting all three-center
integrals. This means that the integral in Eq. (25) depends only upon the form of the Löwdin functions,
which have the same symmetry as the corresponding atomic orbitals, and the vector (Rj −Ri) between the
atoms.

The eigenstates of the system are obtained by solving the characteristic equation:61

Ĥ|ψi⟩= Ei|ψi⟩ (26)

where the eigenstates are given in an atomic-like basis set , {ψiα}. Typically, only a small number of basis
functions are used, corresponding to the atomic orbitals in the energy range of interest.

As already mentioned, (i) the basis functions do not need to be explicitly evaluated, as Hamiltonian
matrix elements are sufficient to find the electronic structure of the system; and (ii) The integral in Eq. (25)
is replaced with a parameter which depends only upon the internuclear distance |Ri−Rj| and the symmetry
of the orbitals involved.

The band energy of the crystal is evaluated by integrating the density of states, n(E)

Eband =
∫ E f

En(E)dE (27)

where E f is the Fermi level.
All other parts of the energy are typically described by a pairwise function:

Erep = ∑
i ̸= j

Ui j (28)

For detailed review on tight-binding modeling of materials see e.g., Goringe et al.61

Application to Nanostructures – Electronic structure calculation of a nanostructure quite often requires de-
tailed modeling of the local environment on an atomic scale and introduces material considerations into the
calculations. From the electronic structure point of view, the employed treatment depends on whether a
nanostructure is strained or not.7 The difference in the treatment of the two cases comes from the depen-
dence of matrix elements of the Hamiltonian between two orbitals on the positions of atoms. In a strain
free nanostructure (lattice matched), the atoms constitute a crystal with uniform unit cells, whereas in a
lattice -mismatched structures, one can roughly discern “unit cells”, but these cells vary in size, and atomic
positions within them.7

As and example, we will show here case of lattice-matched quantum dots, where the wavefunction is
represented as a general expansion in terms of localized atomic-like orbitals:7

|ψ⟩= 1√
N1N2N3

N1

∑
n1=1

N2

∑
n2=1

N3

∑
n3=1

∑
α

∑
µ

C(αµ)
n1n2n3 |αµ ;Rn1,n2,n3 +vµ⟩ (29)

where α denotes the atomic-like orbitals centered on the µ atoms within each cell (n1,n2,n3). The
wavefunction is normalized over a volume consisting of Ni cells in the ai (i=1,2,3) direction.
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For the lattice-mismatched systems, problem is that the cells are no longer regularly placed and displace-
ments depend on the specific cell and atom type. Also, the nearest neighbor parameters depend upon the
relative atomic positions, which, in general, vary from cell to cell. Unfortunately, not only the tight-binding
parameters change, but also the overlaps of the true atomic orbitals from which the Löwdin functions are
constructed.7

3.3 Empirical Pseudopotential Method:

In the empirical pseudopotential method (EPM), the crystal potential is represented by a linear superposition
of atomic potentials, which are modified to obtain good fits to the experimental direct and indirect band gaps
and effective masses.

In solving the Schrödinger equation, the electrons are split into core and valence electrons. The core
electrons are tightly bound and respond very little to the presence of neighboring atoms, whereas the valence
electrons occupy the outer shells and are involved in the bonding of the atoms together. Only valence
electrons are considered in pseudopotential methods, and the core electrons are treated as if they are frozen
in an atomic-like configurations. Consequently, the valence electrons are considered to be moving in a weak
one-electron potential. The justification is provided by the Phillips-Kleinman cancellation theorem.63

The pseudopotentials were initially constructed only to reproduce one-electron eigenvalues and to be
as weak as possible. The more complex methods for the construction of pseudopotentials focus on mak-
ing the valence pseudoorbital resemble as much as possible the valence orbital beyond some fiducial core
radius ri, which depends on the principal angular momentum quantum number l, and imposes other condi-
tions, typically including smoothness in some form. Discussion about choice of pseudopotentials and their
construction is beyond the scope of this work, and detailed analysis can be found elsewhere.11,64

Derivation of the model for bulk – The pseudopotential Hamiltonian for an electron in the crystal consists of
a kinetic-energy term and a weak position-dependent potential V (r):65

H =− h̄2

2m
∇2 +V (r) (30)

The potential V (r) is a linear combination of atomic potentials Vα(r). Given that the crystal potential is
periodic, the pseudopotential is also a periodic function and can be expanded in reciprocal lattice vectors
G.

V (r) = ∑
G

V0(G)eiGr (31)

where the expansion coefficient is given by

V0(G) =
1
Ω

∫
d3rV0(r)e−iGr (32)

Ω being the volume of the unit cell.
Simplifying Eq. (32) to a diamond lattice, which has only one type of atoms, we can write the potential

in real space as:

V0(r) =Vα(r+ τ)+Vα(r− τ) (33)

where two-atom basis is taken and centered at the origin R = 0, and τ denotes atomic basis vectors.
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In reciprocal space, the potential is given by:

V (r) = ∑
G

V f f
G S(G)eiGr (34)

where S(G) is a structure factor and V f f
G is a pseudopotential form factor, treated as an adjustable parameter

in EPM.
Starting from the wavefunction composed of a plane wave component and a cell periodic part ψk(r) =

eikruk(r) = eikr ∑G′ U(G′)eiG′r, we obtain Schrödinger equation in a matrix form:

∑
G
[(

h̄(k+G)2

2m
−E)U(G)+∑

G′
V f f

G (|G−G′|)U(G′)] = 0 (35)

The expression in Eq. (35) is zero when each term in the sum is zero. This, rather simple derivation of
the EPM, contains only local pseudopotentials, neglecting the spin-orbit interaction. This simplified local
EPM gives reasonable good predictions for optical gaps, but fails when it comes to valence-band states.66

When spin-orbit interaction is included, Schrödinger equation is of the form:

(− h̄2∇2

2m
+V (r)+Hso)Ψ(r) = EΨ(r) (36)

where Hso is the spin-orbit interaction term given by:

Hso =
h̄

4m2c2 [
1
r

∂V
∂ r

]Lσ (37)

where L is the angular momentum and σ is the Pauli spin matrices.
In the presence of spin-orbit interaction, the crystal wavefunction is a (2 × 1) spinor which has the

following form:

Ψkσ = ψk −∑
t
⟨|Φt |ψk⟩Φtσ (38)

where σ =±1
The secular equation takes the form:

|Hm′kσ ′;mkσ −Eδm′σ ′;mσ |= 0 (39)

where the matrix elements is given by:

Hnkσ ′;mkσ = E0
mkδnσ ′;mσ + ⟨|Psink′σ ′|Hso|Ψmkσ ⟩ (40)

where n and m are row and column indexes, respectively.

Application to Nanostructures – EPM can be directly applied to nanostructures. Screened-strain-dependent
atomic pseudopotential vα (r;Tr(ε)) are placed on each site of atom of type α . They are fitted to bulk
properties of constituent materials making nanostructure (e. g., InAs/GaAs self-assembled QD, InAs for
QD and GaAs for barrier) including bulk band structures, experimental deformation potentials and effective
masses and directly feel strain effects via hydrostatic component of the strain tensor [Tr(ε)], if strain is
present in the system.

1–21 | 13

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry
This journal is © The Royal Society of Chemistry 2011



The total pseudopotential of the system V(r) is constructed by superposing the nonlocal spin-orbit inter-
action, Vso, to this local screened pseudopotential, vα (r;Tr(ε)), of all atoms:9,10,19

V (r) =Vso +∑
i,α

vα(r−Ri,α ;Tr(ε)). (41)

The single-particle electron {e0, e1, e2,...} and hole {h0, h1, h2,...} states are extracted from the single-
particle Schrödinger equation:9,10

{−1/2∇2 +V (r)}ψi = Eiψi , (42)

Depending on the size of the system, two basis sets are employed.9–11 For structures up to a few hundred
thousand atoms, a plane wave basis set is used:9,11

Ψi = ∑
G

ci(G)eiGr (43)

where ci(G) are the expansion coefficients. The Hamiltonian matrix is large (∼ several millions), but sparse.
The kinetic energy term is calculated in Fourier space, where it is diagonal, and the potential energy part in
real space.9,11

For large nanostructures, several million atoms, the basis set is constructed from a linear combination of
strained bulk Bloch states, ϕnk(r,ε) from n bands, k k-points, and taken at a few strain values ε:10,11

Ψi(r,ε) = ∑
n,k

c(i)n,kϕnk(r,ε) (44)

The Hamiltonian matrix is small (∼ few tens of thousands) with this basis set. Whole matrix can be easily
stored in the memory, and it is diagonalized for several eigenvalues.10,11

For further reading on pseudopotential methods in condensed matter applications we recommend Pick-
ett,64 and on EPM in materials and nanostructures recent review by Bester.11

3.4 Implementation of Effects of an External Magnetic Field to Nanostructures

From the theoretical point of view, the effects of an external electric field are included through Peierls
substitution in the wave-vector and by the Zeeman energy term. However, complications can arrise in the
numerical implementation. These comlications are typically related to the choice of the gauge and breaking
of the gauge invariance. In what follows, we will briefly discuss how magnetic field should be implemented
theoretically and what are the known issues in the implementation in the effective-mass, tight-binding, and
pseudopotential methods.

Magnetic field B is defined via magnetic vector potential A:

B = ∇×A . (45)

A is not unique, so if A is the vector potential for B, then so is A+∇χ , where χ is an arbitrary scalar
function. This nonuniqueness leads to a degree of freedom(gauge freedom) and requires choosing a gauge.

In a gauge transformation, the vector potential transforms as A → A+∇χ , and state ψ(r → G(r)ψ(r),
where G(r) = exp(−i(e/h̄)χ(r)). If the theory is gauge invariant, then all physical quantities must be
independent of such transformations. For example, if χ = χ(y,z), then ⟨x⟩ → ⟨G+xG⟩, where G+xG ̸= x.
No theory can be gauge invariant if x, y, z do not commute.
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From a purely practical point of view, this can be interpreted as follows. If a model nanostructure
defined in a supercell/computational box is exposed to an external homogeneous magnetic field, then single
particle energy levels and wavefunctions should not be sensitive to the choice of the gauge and/or the
position of nanustructure within the cell/box. This lead to the two basic tests that each and every correct
implementation of an homogeneous magnetic field should satisfy within the numerical accuracy. The single
particle energy levels and wavefunctions (i) should not be influenced by changing the gauge, e.g., going
from Landaue to Symmetric gauge; (ii) should not be be affected by the position of the nanostructure
within the cell/box.

Implementation in the effective mass k ·p method: Theoretically, the effects of a magnetic field in an
effective mass Hamiltonian are included through Peierls substitution in the wave-vector and by adding
the Zeeman energy term.38,39 This Hamiltonian is gauge invariant. However, “numerically implemented”
Hamiltonian, e.g., discretized on the grid, has to mantain all the properties of the continuum one for a gauge
transformation of the vector potential. If this condition is not fulfilled large errors in the estimates of eigen-
values and corresponding eigenvectors may occur. To illustrate correct gauge invariant implementation, we
consider Hamiltonian with Peierls substitution for the wave vector, discretized on a grid. We use Wilson’s
formulation of the lattice gauge theory.4,5,67 We impose the condition that a discretized Hamiltonian main-
tains all its physical properties if a gauge transformation of the vector potential has been performed.4,5,67

If the vector potential transforms as A→A+∇χ , then a wave function representing a pysical state of the
system transforms as Ψ(r)→ G(r)Ψ(r), where G(r) = exp(−i(e/h̄)χ(r)), e - electron charge, h̄ - Planck
constant. As a consequence, the Hamiltonian transforms as H → G(r)HG+(r).

Considering an uniform discretization grid, the lattice operator U j(ξ ), can be defined as:

U j(ξ ) = exp(−i(e/h̄)alattA j(ξ )) , (46)

where j=x,y,z, alatt - is the grid spacing, and ξ = (lalatt ,malatt ,nalatt) defines the position on the grid. U j(ξ )
can be understood as the link variable between two points on the grid, and it transforms as:4,68

U j(ξ )→ G+(ξ )U j(ξ )G(ξ + j) (47)

Using previous expressions, one obtains correct discretization scheme. For example, the discretization
of the second derivative is given by:4,68

∂ 2ψ
∂x2 →

U+
x (i, j,k)ψi+1, j,k −2ψi, j,k +Ux(i+1, j,k)ψi−1, j,k

a2
latt

. (48)

Using the discretization scheme illustrated by Eq. (48), the phase of the wave functions gets preserved. It
is important to stress that the phase should be preserved at the edges of the computational box by using the
correct choice of the boundary conditions. For example, imposing Dirichlet boundary conditions ensures
phase preserving of the wave functions.

Implementation in the tight-binding method: Tight-binding Hamiltonians are often used to discretize the
Schr“odinger equation on a lattice. In order to include external magnetic field into the model, effects of
discretization on the gauge invariance should be considered.

The simplest proposed solution is given by:68,69

HT B = ∑
x
[Nd(h̄2/ma2

latt)+V (b f r)]|x⟩⟨x|+∑
x

∑
y̸=x

(− h̄2

2ma2 )exp(iθx,y)|x⟩⟨y| (49)

1–21 | 15

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry
This journal is © The Royal Society of Chemistry 2011



This approach is based on a cubic lattice, and sifficient accuracy can be achieved only with an extremly
large basis. There are a few other apporaches in the framework of tight-binding approach to preserve the
gauge invariance, but they cannot descirbe intra-atomic transitions.69 Foreman proposed a tight-binding
model that can be made a gauge invarinat where the basis can be constructed from the symmetrized coordi-
nate eigenkets.69

Implementation in the empirical pseudopotential method: The psedopotential Hamiltonian in the pres-
ence of a magnetic field should behave in the same way as the all-electron Hamiltonian. The effects of
a magnetic field are included through Peierls substitution in the wave-vector and by adding the Zeeman
energy term. The main issue is how to deal with non-local potential:70,71

Vnl(r,b f r′) = ⟨r|Vnl|r′⟩ ≠ 0, f or r ̸= r′. (50)

Given Eq. (50), the gauge invariance demands that Vnl depends on the vector potential A: ⟨r|Vnl|r′⟩ =
Vnlexp(−ie/h̄c)

∫
Adr.70,71

3.5 Discussion:

The simplest, single-band effective mass method, has been widely used to predict basic optical properties
of nanostructures. Although, decoupling of bands, as done in the single-band model, introduces significant
errors in energy prediction, a 3D application that includes realistic QDs’ geometry is often accepted as
a good first approximation, especially by the experimentalists. Implementation of a multi-band model
appears as a reasonable compromise between the simplicity and inclusion of most relevant effects present
in semiconductor nanostructures, where maybe the most studied are III-V semiconductor QDs. Advantages
of this approach are easy treatment of strain effects, external electric and magnetic field, growth on high
index surfaces. Main drawbacks of the multi-band effective mass model are limited number of bands
used in expansion (not all relevant band mixing may not be included), omission of atomistic symmetry
(only geometric one is present).5 Tight-binding and EPM are certainly more accurate and capture atomistic
effects. They have been successfully applied to describe optical properties of various nanostructures. It has
been argued that the tight-binding models lack atomistic wavefunctions, because of direct parametrization
of the Hamiltonian.11

All the methods we analyzed here are empirical, and their parameters’ sets are typically fitted to exper-
imental data. The lack of the accuracy of the input parameters, limits the predictions of these methods.
However, the ab initio methods, such as Hartree-Fock, Density Functional Theory, or GW, which calculate
electronic structure from first principles, can not be used because of the size of nanostructures. The ab
initio methods have been used to calculate up to a few hundred atoms (<500 atoms), whereas a typical
nanostructure contains few hundred thousands of atoms. The importance of ab initio methods comes from
the need to improve accuracy of input parameters and/or to be used as benchmark.

4 Exciton Complexes in Nanostructures

Presence of Nh holes and Ne electrons in a nanostructure creates exciton complexes; neutral excitons, if
Nh = Ne, or charged excitons if Nh ̸=Ne. Coulomb interaction, including exchange and correlation effects
between carriers in a nanostructure reveals an interesting playground for investigation of many particle
physics in confined spaces.19,72 The fingerprints of exciton complexes are best seen in the emission spectra,
where spectroscopic transitions result from the recombination of an electron in the conduction band with
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a hole in the valence band, where Ne-1 and Nh-1 spectator electrons and holes, respectively, occupy other
electronic levels. In that respect, the spectroscopy of self-assembled semiconductor QDs is quite remark-
able, revealing an amazingly rich set of very sharp excitonic lines in a single-dot emission spectrum.20,73–75

This not the case with colloidal nanocrystals where efficient non-radiative Auger recombination of exciton
complexes prevents radiative emission.72,76

In the emission spectra of individual self-assembled semiconductor QDs, various exciton complexes
have been identified unambiguously either by tuning the excitation intensity24 or direction and amplitude
of an electric field in which the QD is embedded.74,75 There have been various theoretical studies of exciton
complexes, with different levels of complexity. The simplest approach is perturbation theory approach,
based on the simple counting of interactions between carriers, often disregarding the morphology of the
QD.77 The more complex theoretical models, take into account QD morphology (e.g., by assuming QD size,
shape, and composition), strain effects and piezo effects, predicting emission spectra.19,21,72–74 The nature
of many-particle interaction, such as electron-hole Coulomb effects, electron-hole exchange interaction, or
correlations can be extracted from configuration-interaction (CI) method.

4.1 Configuration Interaction Method:

Exciton complexes are calculated using the configuration interaction (CI) method,19,26,72,78–80 taking into
account direct Coulomb interaction, exchange and correlation effects.

The many-body state is expanded into configurations built from the ground and excited single particle
states. Antisymmetrized products of single particle wavefunctions accounting for direct Coulomb inter-
action and exchange, whereas the correlation effects are accounted for by expanding the basis to include
excited-state-configurations.73

Slater determinants Φv,c are constructed from single-particle electron and hole orbitals. The multiexciton
wavefunctions Ψ are expanded in terms of this determinal basis set:19,78

Ψ =
Nv

∑
v=1

Nc

∑
c=1

Cα
v,cΦv,c , (51)

where Nv and Nc denote the number of valence and conduction states included in the expansion of
the multiexciton wavefunction. In the notation the valence states are numbered from 1 to Nv in order of
decreasing energy starting from the valence-band maximum, while the conduction states are numbered from
1 to Nc in order of increasing energy starting from the conduction-band minimum.

The matrix elements of the many-particle Hamiltonian H in the basis set {Ψv,c} are calculated as

Hv,c,v′,c′ = ⟨Φv,c|H|Φv′,c′⟩= (Ec −Ev)δv,v′δc,c′ − Jvc,v′c′ +Kvc,v′c′ , (52)

where J and K are the Coulomb and exchange integrals, respectively:

Jvc,v′c′ = e2 ∑
σ1,σ2

∫ ∫ ψ∗
v′(r1,σ1)ψ∗

c (r2,σ2)ψv(r1,σ1)ψc′(r2,σ2)

ε(r1,r2)|r1,r2|
dr1dr2 , (53)

Kvc,v′c′ = e2 ∑
σ1,σ2

∫ ∫ ψ∗
v′(r1,σ1)ψ∗

c (r2,σ2)ψc′(r1,σ1)ψv(r2,σ2)

ε(r1,r2)|r1,r2|
dr1dr2 , (54)

Coulomb and exchange integrals (Eqs. 53 and 54) are computed numerically from the pseudopoten-
tial single-particle orbitals. The screening function for these integrals ε(r1,r2) contains an ionic and an
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electronic component that exhibit a smooth transition from unscreened at short range to screened at long
range.11,78

5 Post-Processors

Postprocessor tools are various and include calculation of the multiexcitonic emission spectra,19–21 fine
structure splittings of exciton complexes, energy transfer for semiconductor nanocrystals,23 charging ener-
gies, entanglement6,24 to name just a few.

5.1 Optical Properties of Nanostructures

The emission intensity spectrum of a (multi)exciton, χ , for polarization vector ê of the electromagnetic
field, is given by:81

I(e)(ω ,T,χ) = ∑
i, f

|M(e)
i f (χ)|2Pi(T,χ)δ [ω −ωi f (χ)] (55)

where

M(e)
i f (χ) = ⟨Ψ( f )(χ −1)|ê ·p|Ψ(i)(χ)⟩ , (56)

Pi(T,χ) = Nexp[−E(i)(χ)−E(0)(χ)
kBT

] , (57)

are the transition dipole matrix element and occupation (Boltzmann) probability of the initial state at
temperature T, respectively. The transition energy is ωi f (χ).

In the case of semiconductor III-V self-assembled QDs, such as (In,Ga)As/GaAs QDs, there is a strong
anisotropy between the [001] and [xy0] polarization directions, and weaker anisotropy between [110] and
[110].26 The polarization anisotropy between the [110] and [110] directions:

p =
I110 − I110

I110 + I110
. (58)

Eq. (58) reflects the C2v symmetry of the single-particle wavefunctions. This quantity is particularly
important for the emission from mono-exciton (X0) in a Ga1−xInxAs/GaAs QD. The fine-structure splitting
(FSS) of X0 yields two optically active transitions split typically by a few tens of µeV, and each linearly
polarized along two orthogonal axes of the QD.73 The magnitude of the FSS and the polarization directions
of two transitions have attracted recently special attention because of potential application of QD’s as single
photon sources.82 The requirement for a QD in such applications is that the emitted photons would be
distinguishable only by polarization so the FSS needs to vanish.

5.2 Electronic Energy Transfer

The electronic energy transfer (EET) is defined as a transfer of the excitation energy from an electronically
excited donor system, such as atom, or nanocrystal, to a nearby acceptor, in a nonradiative way.23,83 For
example, EET was demonstrated between QDs, organic polymers and QDs, etc.

The rate of EET between a single electronic state of a donor and acceptor is given by:23,83
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k =
2π
h̄
|sVs|2J (59)

where Vs is the electronic coupling between donor and acceptor transition densities, s is the solvent
screening factor, and J is the normalized overlap between donor emission and acceptor absorption spectra.

The electronic coupling, Vs can be calculated as:

V (3D)
s =

∫ ρD
g,eρA

e,g

r1 − r1
dr1dr2 , (60)

where ρD
g,e and ρA

e,g are transition densities, and, for the case of QD-QD EET, given by

ρe,g = ∑
σ

ψ∗
v (r,σ)ψc(r,σ) (61)

where ψc(r and ψv(r are single-particle conduction and valence wavefunctions, respectively.
The electronic coupling, Vs, given by Eq. (60), is Coulombic and represents coupling between transition

densities connecting the ground state and excited state for the donor and acceptor. Vs can be calculated
directly from Eq. (60). However, quite often the point-dipole approximation, coming from Förster theory,
gets employed, where the electronic coupling, expanded as multipole series, is obtained by truncating the
expansion to the interaction between transition dipole moments:23,84

Vs ≈=Vdip−dip =
κµT

D µT
A

R3 , (62)

where κ is the orientation factor, given in the terms of the angles between transition moments and donor-
acceptor vector, and µT

i , i = D,A are transition dipole moments of D and A separated by a distance R. In
the case of QDs they are defined:

µQD =
∫

rαρQD
eg (r)dr (63)

where α = x,y,z
Transition densities can be obtained from single particle wavefunctions, using methods described in

Sec. 3. For example, analysis of EET involving QD-QD pairs was performed using empirical tight-
binding84 and empirical pseudoptential methods.23

The validity of approximation for EEC given by Eq. (62), leads to the Förster resonance energy transfer
(FRET). FRET is an important communication and transport mechanism on the nanoscale, thus the interest
in controling this process in assemblies of QDs, or on the single donor-acceptor pair level.84,85 FRET
between QDs has been already investigated in closely packed mixed layers and separated donor and acceptor
layers.85–87

5.3 Charging Energies

The charging energy is the energy required to add one more carrier to a nanostructure already charged with
N-1 carriers: µ(N) = E(N)−E(N −1).88 E(N) are ground state energy of N-particle nanostructure.
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