Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2011

## Supporting Information for

Controlled Synthesis and Upconversion Luminescence of Lanthanide Doped BaYF<sub>5</sub> Nanocrystals

## Hailong Qiu,<sup>*a*</sup> Guanying Chen,<sup>*a,b*</sup> Liang Sun,<sup>*a*</sup> Shuwei Hao<sup>*a*</sup> Gang Han, <sup>*c*</sup>\* and Chunhui Yang<sup>*a*</sup>\*

<sup>a</sup>School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, People's Republic of China. \*E-mail:yangchh@hit.edu.cn <sup>b</sup>Institute for Lasers, Photonics and Biophotonics, Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260. <sup>c</sup>Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605. \*E-mail: gang.han@umassmed.edu.



**Figure S1.** The typical XRD patterns of BaYF<sub>5</sub> with the  $RE^{3+}/EDTA$  of (a)1:2, (b)1:4, (c)1:8, and (d)1:10, respectively.





**Figure S2.** (a) TEM, (b, c and d) FESEM images of NaYF<sub>4</sub> with the  $RE^{3+}/EDTA$  of (a)1:10, (b)1:8, (c)1:4, and (d)1:2, respectively. (f) XRD patterns of NaYF<sub>4</sub> powders in Figure S2 (a-d). All the diffraction peaks of NaYF<sub>4</sub> powders with  $RE^{3+}/EDTA$  of (a)1:10, (b)1:8, (c)1:4, and (d)1:2 agree well with standard hexagonal structure of JCPDS 16-0334.



Figure S3. Relative distribution of species of EDTA versus the pH value.



**Figure S4.** The typical XRD patterns of BaYF<sub>5</sub> at (a) pH=1, (b)pH=3, (c) pH=5, and (d) pH=7, respectively



**Figure S5.** The typical XRD patterns of BaYF<sub>5</sub> with  $RE^{3+}/F^{-}$  ratio of (a) 1:5 (b) 1:10, (c) 1:15 and (d) 1:20, respectively.



Figure S6. TEM images of BaYF<sub>5</sub> nanocrystals after ligand exchange.



**Figure S7.** Fourier transform infrared (FT-IR) spectra of BaYF<sub>5</sub> nanocrystals before (a) and after (b) ligand exchange using PAA. Photographs of colloidal solutions of the BaYF<sub>5</sub> nanocrystals (50-60nm) dispersed in cyclohexane and water before (c) and after (d) PAA modification. The FT-IR spectra were used to characterize the functional groups present on the surface of nanocrystals. The band at 1374 cm<sup>-1</sup> characterizing the mode of the C=O (N-CO-OH) stretching vibration in the EDTA molecule became weaker after ligand exchange (Figure S7b), suggesting the decreased EDTA molecule on the surface of BaYF<sub>5</sub> nanoparticles. Moreover, the bands at 1738 cm<sup>-1</sup> and 2945 cm<sup>-1</sup> newly appeared in Figure S7b characterize the –COOH group and the stretching vibration of methylene (CH<sub>2</sub>) in the long alkyl chain, respectively, illustrating the presence of the PAA molecule on the surface of BaYF<sub>5</sub> nanoparticles. These observations give a strong evidence of the successful exchange of EDTA by the ligand of PAA. The broad band between 2800 cm<sup>-1</sup> and 3600 cm<sup>-1</sup> arises from the O-H stretching vibration (COO-H).



**Figure S8.** The dependence of the intensities of upconversion emissions bands on the power of excitation at 980 nm in the  $BaYF_5$ :  $18\%Yb^{3+}/2\%Er^{3+}$ system.



**Figure S9.** Schematic energy-level diagrams, upconversion excitation, and visible emission schemes for the BaYF<sub>5</sub>:  $Yb^{3+}/Er^{3+}$  system.



**Figure S10.** Upconversion emission spectra in the wavelength range of 350-700 nm of BaYF<sub>5</sub>:18%Yb<sup>3+</sup>/2%Er<sup>3+</sup> powders with size of (a) 10-20 nm, (b) 50-70 nm, (c) 100 nm, and (d) 1 $\mu$ m microcrystals. The corresponding TEM images of BaYF<sub>5</sub>:18%Yb<sup>3+</sup>/2%Er<sup>3+</sup> powders with size of (a) 10-20 nm, (b) 50-70 nm, (c) 100 nm, and (d) 1 $\mu$ m was shown in Figure 2.



**Figure S11.** The dependence of the intensities of upconversion emissions bands on the power of excitation at 980 nm in the  $BaYF_5$ :  $18\%Yb^{3+}/2\%Ho^{3+}$ system.



**Figure S12.** Schematic energy-level diagrams, upconversion excitation, and visible emission schemes for the  $BaYF_5$ :  $Yb^{3+}/Ho^{3+}$  system.



Figure S13. The dependence of the intensities of upconversion emissions bands on the power of excitation at 980 nm in the  $BaYF_5$ :  $18\%Yb^{3+}/2\%Tm^{3+}system$ .



Figure S14. Schematic energy-level diagrams, upconversion excitation, and visible emission schemes for the  $BaYF_5$ :  $Yb^{3+}/Tm^{3+}$  system.

| Table 31.              | The effect of reaction conditions |
|------------------------|-----------------------------------|
| Reaction conditions    | Size and shape                    |
| RE <sup>3+</sup> :EDTA |                                   |
| 1:2                    | 10-20nm nanoparticles             |
| 1:4                    | 50-70 nm nanoparticles            |
| 1:8                    | 100 nm nanoparticles              |
| 1:10                   | 1µm cubic microcrystal            |
| pH                     |                                   |
| 1                      | 5-10nm nanoparticles              |
| 3                      | 5-10nm nanoparticles              |
| 5                      | 30-40nm nanoparticles             |
| 7                      | 250-300nm nanoparticles           |
| $RE^{3+}:F^{-}$        |                                   |
| 1:5                    | 10-20nm nanoparticles             |
| 1:10                   | 10-20nm nanoparticles             |
| 1:15                   | 10-20nm nanoparticles             |
| 1:20                   | 10-20nm nanoparticles             |

 Table S1.
 The effect of reaction conditions