Electronic Supporting Information (ESI)

Increased photocurrent response in Nb-doped TiO₂ nanotubes

Min Yang^{*a,b*}, Himendra Jha^{*a*}, Ning Liu^{*a*} and Patrik Schmuki^{*a*}*

^a Department of Materials Science, WW4-LKO, University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen, Germany

^b Current address : Department of Catalysis Science and Engineering, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, PR China

Email: <u>schmuki@ww.uni-erlangen.de</u> (P. Schmuki).

Fig. S1 XPS of Nb3d peaks in 0.1 wt% Nb-doped and 0.5 wt% Nb-doped TiO_2 nanotube layers. Quantitative evaluation shows the content in the oxide to be close to the nominal alloy composition (0.1 wt% Nb is however close to detective limit of XPS).

Fig. S2 Light absorbance for pure TiO_2 and 0.1 wt% Nb-doped TiO_2 nanotube layers with $2\mu m$ thickness annealed at 650°C, acquired using diffuse reflectance measurements. It shows the absorbance of the Nb-doped material to be higher than for plain TiO_2 .