Electrochromism of Vertically Aligned Rutile Nanowires along [001] by Alkali Metal Ion Intercalation

Min-Han Yang, Ting-Ting Chen, Yu-Shiuan Wang, Hsin-Tien Chiu and Chi-Young Lee*

5 Electronic Supplementary Information

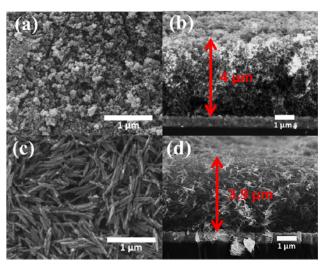


Fig S1. FESEM images of coated TiO_2 film on FTO. Fig (a) & (b) represents the top view and cross section of P25 nanoparticles. Fig (c) & (d) represents the top view and cross section of rutile nanowires.

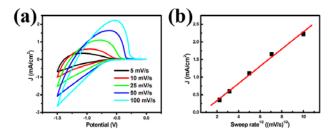


Fig S2. (a) Cyclic voltammograms from R_⊥ at scan rates of 5, 10, 25, 50, and 100 mVs⁻¹ in 1 M LiClO₄/PC. Fig (b) shows the dependence of the anodic peak current on the square root of the sweep rate according to a diffusion control.

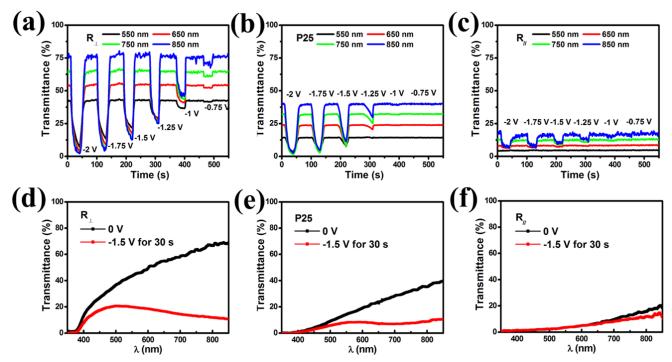


Fig S3. The electrochromic performance of all TiO_2 electrodes in 1 M LiClO₄/PC: Fig (a)-(c) show the electrochromic contrast of a collection of wavelength (550 nm to 850 nm) at a series of cathodic polarization potentials, Fig (d)-(e) present the transmittance spectrum of TiO_2 electrodes (Fig (a) & (d) refer to R_{\perp} , Fig (b) & (e) refer to P25 and Fig (c) & (f) refer to $R_{//}$)

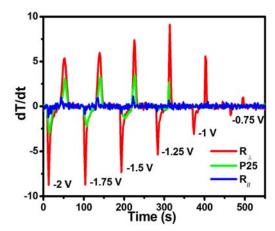


Fig S4. The colour switching responses of the TiO₂ electrodes were estimated by differential of the transmittance versus time.