QD-"Onion"-Multicode Silica Nanospheres with Remarkable Stability as pH sensor.

Ivan Castelló Serrano, ^a Qiang Ma^a and Emilio Palomares^{*a,b}.

^a Institute of Chemical Research of Catalonia (ICIQ). Avda. Països Catalans, 16.

Tarragona E-43007. Spain Fax: 34 977920223; Tel: 34977929241; ^b ICREA. Avda.

Lluís Companys, 23. Barcelona. E-08010. Spain

E-mail: epalomares@iciq.es.

Synthesis of QDs

Supporting **Figure S1.** Comparison of the UV-Vis absorption (A) and emission spectra (B) of blue $Zn_xCd_{1-x}S$ (a), green CdSe/ZnS (b) and orange CdSe/ZnS (c) colloidal QDs.

Supporting Figure S2. Photographs of a series of $Zn_xCd_{1-x}S$ (blue), and CdSe/ZnS (green and orange) QDs under daylight (above) and under UV light (below), respectively.

Synthesis of QOM

Supporting Figure S3. TEM images of QOM with different number of silica layers. A) core (quantum dots with a silica shell), B) 1-layer QOM (core with another layer of silica with embedded quantum dots), C) 2-layer QOM (core with 2 layers of silica with embedded quantum dots). The scale bar corresponds to 200 nm.

pH test

	Supporting funder interesting of the enclinear stability at anteresting provides over									
рΗ	2	3	4	5	6	7	8	9	10	11
1h	0.628	0.832	0.976	1.010	0.996	1.000	1.010	1.092	1.095	0.255
3h	0.631	0.811	0.980	0.990	1.010	1.010	1.010	1.087	1.091	0.261
5h	0.618	0.820	0.961	0.990	0.992	0.997	0.998	1.011	1.093	0.238
1d	0.570	0.760	0.910	0.940	0.940	0.992	0.970	0.920	0.930	0.201
2d	0.580	0.730	0.890	0.920	0.950	0.970	0.910	0.930	0.870	0.202
3d	0.490	0.660	0.850	0.890	0.920	0.910	0.850	0.900	0.830	0.191
4d	0.450	0.690	0.823	0.881	0.902	0.921	0.861	0.870	0.840	0.163
5d	0.440	0.620	0.730	0.840	0.850	0.910	0.830	0.860	0.790	0.136
6d	0.410	0.530	0.701	0.806	0.839	0.893	0.819	0.853	0.786	0.123
7d	0.400	0.510	0.690	0.770	0.818	0.880	0.822	0.840	0.770	0.120

Supporting Table T1. Results of the chemical stability at different pH values over time

Figure S4. Figure showing silica nano-spheres containing green emissive QD's. We would like to remark that the QDs can be envisage as dark spots inside the nano-spheres.

