Miniemulsions as chemical nanoreactors for the room temperature synthesis of inorganic crystalline nanostructures: ZnO colloids

Paolo Dolcet^a, Maurizio Casarin,^{a,b} Chiara Maccato^a, Laura Bovo^a, Gloria Ischia^c, Stefano Gialanella^c, Fabrizio Mancin^a, Eugenio Tondello^{a,b}, Silvia Gross^{a,b*}

^a Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo, 1, I-35131, Padova, Italy ^b Istituto di Scienze e Tecnologie Molecolari, ISTM-CNR via Marzolo, 1, I-35131, Padova, Italy ^cDipartimento di Ingegneria dei Materiali e Tecnologie Industriali, Via Mesiano 77, 38123 Trento, Italy

Size Distribution by Number

Fig. S2 - Survey spectrum of ZnO nanoparticles obtained using Triton-X 100 as surfactant

Fig. S3 – XPS peaks of ZnO^{PVP}, with deconvolution: a) C1s, b) N1s, c) O1s, d) Zn2p_{3/2} (values not corrected for charging effect)

Fig. S4 – XPS peaks of ZnO^{SDS}, with deconvolution: a) S2p, b) C1s, c) O1s, d) Zn2p_{3/2} (values not corrected for charging effect)

Fig. S5 – Thermogram (black) and calorimetry (red) of ZnO^{PVP}

Electron Image 1

O Ka1

Zn La1_2

Fig. S6- EDX compositional maps of ZnO^{PVP} sample

Fig. S8 - FT-IR spectra of TritonX-100 (dashed line) and surfactant-functionalized ZnO^{TritX} NPs (solid line)