ELECTRONIC SUPPORTING INFORMATION

The Intercalation of Flavouring Compounds into Layered Double Hydroxides for Taste Modification

Charles Markland, Gareth R. Williams, and Dermot O'Hare*

Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA

* author for correspondence.
Email address: <u>dermot.ohare@chem.ox.ac.uk</u>.
Tel: +44 (0) 1865 285130. Fax: +44 (0) 1865 285131.

CONTENTS

Table S1. Comparison of guest molecule lengths to the observed interlayer separations.

Table S2. Elemental Analysis Data and Chemical Formulae of the Intercalates

Table S3. (t₅₀ and Total Release Values for all LDH intercalates)

Table S4. Rate Equations of the Kinetic Models used²⁻⁸

Table S5. Parameters extracted from the fitting of the kinetic models

Cuest	Guest	Metals	d-spacing	Interlayer	(Gallery Height)/	Probable
Guest	Length (Å)		(Å)	Separation (Å)	(Guest Length)	Arrangement
Acesulfame	7.5	Li/Al	14.4	9.6	1.3	Interdigitated bilayer
		Mg/Al	14.3	9.5	1.3	Interdigitated bilayer
		Ca/Al	15.5	10.7	1.0	Monolayer
Cyclamate	10.2	Li/Al	37.2 / 20.3	32.4 / 15.5	3.2 / 1.5	Hydrated structure / IB
		Mg/Al	21.8	17.0	1.7	Interdigitated bilayer
	8.6	Ca/Al	14.7	9.9	1.2	Interdigitated bilayer
Saccharin		Li/Al	15.4	10.6	1.2	Interdigitated bilayer
		Mg/Al	15.2	10.4	1.2	Interdigitated bilayer
		Ca/Al	11.1	6.3	0.5	Tilted Monolayer
Ferulate	11.9	Li/Al	17.2	12.4	1.0	Monolayer
		Mg/Al	17.3	12.5	1.1	Monolayer
Theobromine	10.0	Ca/Al	13.6	8.8	0.9	Tilted Monolayer
		Li/Al	17.7	12.9	1.3	Interdigitated bilayer
		Mg/Al	13.0	8.2	0.8	Tilted Monolayer

Table S1. C	Comparison of	guest molecule	lengths to the	e observed in	nterlayer separations.
-------------	---------------	----------------	----------------	---------------	------------------------

The 'guest length' is equal to the through-space separation between the charge-bearing atom and the most distant atom in the molecule, with the van der Waals radii of each atom added on. The thickness of a single hydroxide layer is 4.8Å.¹ Values shown for the Li/Al-Cyclamate LDH are those of the expanded and dehydrated structures, respectively. IB = Interdigitated bilayer.

Compound Name	Chemical Formula	Predicted C, H, N (%)	Observed C, H, N (%)
Ca/Al-Cyclamate	$[Ca_{2}Al(OH)_{6}](C_{6}H_{12}NO_{3}S)_{0.76}(CO_{3})_{0.12} \cdot 2.4H_{2}O$	14.23, 5.08, 2.69	14.20, 5.07, 2.62
Ca/Al-Saccharin	$[Ca_{2}Al(OH)_{6}](C_{7}H_{4}NO_{3}S)_{0.76}(NO_{3})_{0.24}\cdot 2H_{2}O$	16.03, 3.30, 3.51	15.99, 3.21, 3.41
Ca/Al-Ferulate	$[Ca_2Al(OH)_6](C_{10}H_9O_4) \cdot 1.2H_2O$	28.33, 4.14, -	28.44, 4.05, -
Ca/Al-Theobromine	$[Ca_2Al(OH)_6](C_7H_7N_4O_2)_{0.21}(OH)_{0.79} \cdot H_2O$	6.35, 3.72, 4.23	6.28, 3.91, 4.22
Li/Al-Acesulfame	$[LiAl_2(OH)_6](C_4H_4NO_4S)_{0.73}Cl_{0.27} \cdot 1.5H_2O$	11.03, 3.78, 3.22	10.98, 3.77, 3.12
Li/Al-Cyclamate	$[\text{LiAl}_2(\text{OH})_6](\text{C}_6\text{H}_{12}\text{NO}_3\text{S})\cdot 2.2\text{H}_2\text{O}$	18.91, 5.93, 3.68	18.93, 5.90, 3.71
Li/Al-Saccharin	$[LiAl_2(OH)_6](C_7H_4NO_3S) \cdot 1.2H_2O$	22.92, 3.41, 3.82	23.01, 3.41, 3.76
Li/Al-Ferulate	$[LiAl_{2}(OH)_{6}](C_{10}H_{9}O_{4})_{0.65}Cl_{0.35}\cdot 0.6H_{2}O$	25.04, 4.22, -	25.01, 4.26, -
Li/Al-Theobromine	$[LiAl_{2}(OH)_{6}](C_{7}H_{7}N_{4}O_{2})_{0.61}(OH)_{0.39} \cdot H_{2}O$	17.26, 4.30, 11.51	17.20, 4.25, 11.48
Mg/Al-Acesulfame	$[Mg_{2}Al(OH)_{6}](C_{4}H_{4}NO_{4}S)_{0.99}(NO_{3})_{0.01} \cdot H_{2}O$	13.33, 3.38, 3.93	13.35, 3.45, 3.92
Mg/Al-Cyclamate	$[Mg_{2}Al(OH)_{6}](C_{6}H_{12}NO_{3}S)_{0.7}(NO_{3})_{0.3} \cdot 1.3H_{2}O$	14.65, 4.98, 4.07	14.67, 4.93, 3.97
Mg/Al-Saccharin	$[Mg_{2}Al(OH)_{6}](C_{7}H_{4}NO_{3}S)_{0.78}(CO_{3})_{0.11} \cdot 0.9H_{2}O$	19.53, 3.21, 3.19	19.58, 3.04, 3.14
Mg/Al-Ferulate	$[Mg_2Al(OH)_6](C_{10}H_9O_4)_{0.85}(OH)_{0.15} \cdot H_2O$	28.21, 4.40, -	28.20, 4.09, -
Mg/Al-Theobromine	$[Mg_2Al(OH)_6](C_7H_7N_4O_2)_{0.69}(OH)_{0.31} \cdot H_2O$	17.90, 4.09, 11.94	17.91, 3.83, 11.96

Table S2. Elemental Analysis Data and Chemical Formulae of the Intercalates

Metals	Guest	Release Medium	t ₅₀ (Minutes)	Release after 180 Minutes (%)
Ca/Al	Cyclamate	H ₂ O	17	35.2
	Cyclumate	Saliva	<10	91.9
	Saccharin	H ₂ O	<10	59.3
	Saccharm	Saliva	<10	97.2
	Ferulate	H ₂ O	<10	29.7
	rerutate	Saliva	<10	99.4
	Theobromine	H ₂ O	<10	63.7
	Theobronnine	Saliva	30	90.5
	Acesulfame	H ₂ O	21	26.5
	Accountaine	Saliva	61	35.8
	Cyclamate	H ₂ O	<10	38.8
	Cyclamate	Saliva	<10	87.9
τ i/Δ1	Saaaharin	H ₂ O	115	11.2
	Saccharm	Saliva	<10	49.3
	Ferulate	H ₂ O	47	31.3
	rerutate	Saliva	<10	81.7
	Theobromine	H ₂ O	<10	81.8
	Theobronnine	Saliva	<10	83.2
	Acesulfame	H ₂ O	25	21.9
	recounterie	Saliva	<10	90.8
	Cyclamate	H ₂ O	<10	50.1
Mg/Al	Cyclamate	Saliva	<10	80.9
	Saccharin	H ₂ O	<10	66.9
	Saccharm	Saliva	<10	88.8
	Ferulate	H ₂ O	58	6.5
	i ci ulate	Saliva	31	92.1
	Theobromine	H ₂ O	<10	93.1
	i neobronnine	Saliva	<10	99.3

Table S3. (t₅₀ and Total Release Values for all LDH intercalates)

The t_{50} value is the time (in minutes) required for release of 50% of the amount of guest present in solution after 180 minutes.

Kinetic Model	Rate Equation
Avrami-Erofe'ev	$\ln\left[-\ln\left(1-\frac{C_t}{C_0}\right)\right] = n\ln(t) + n\ln(k_r)$
Elovich	$1 - \frac{C_t}{C_0} = n\ln(t) + m$
First-Order	$\ln \frac{C_t}{C_0} = -k_r t$
Freundlich	$C_{0} - C_{t} = k_{r}C_{0}t^{n}$
Parabolic	$\left(1 - \frac{C_t}{C_0}\right)\frac{1}{t} = k_r \frac{1}{\sqrt{t}} + n$

Table S4. Rate Equations of the Kinetic Models used²⁻⁸

t =Reaction time elapsed

 C_t = Concentration released at time t

 C_0 = Concentration present in the solid at t = 0

m =Reaction coefficient

n =Reaction coefficient

 k_r = Rate constant

	Guest	Deionized	Saliva	
Metals		(Avrami-Erofe	(First Order Kinetics)	
		Rate Constant (k_r) (x 10 ⁻³)	Reaction Exponent (<i>n</i>)	Rate Constant (k_r) (x 10 ⁻³)
Ca/Al	Cyclamate	560.1	0.17	3.1
	Saccharin	3.50	0.27	26.6
	Ferulate	0.00079	0.04	31.4
	Theobromine	6.78	0.11	14.8
Li/Al	Acesulfame	0.081	0.30	2.7
	Cyclamate	0.0011	0.08	15.3
	Saccharin	0.087	0.63	5.8
	Ferulate	2.16	0.80	12.7
	Theobromine	293.9	0.14	13.2
Mg/Al	Acesulfame	0.025	0.28	16.3
	Cyclamate	0.110	0.11	12.3
	Saccharin	43.7	0.30	9.9
	Ferulate	14.2	0.66	13.5
	Theobromine	557.6	0.21	26.3

Table S5. Parameters extracted from the fitting of the kinetic models

References

- 1. R. Allmann, *Chimia*, 1970, **24**, 99-108.
- 2. Z. Li, Langmuir, 1999, 15, 6438-6445.
- 3. T. Kodama, Y. Harada, M. Ueda, K.-i. Shimizu, K. Shuto and S. Komarneni, *Langmuir*, 2001, **17**, 4881-4886.
- 4. M. Avrami, J. Chem. Phys., 1939, 7, 1103-1112.
- 5. M. Avrami, J. Chem. Phys., 1940, 8, 212-224.
- 6. M. Avrami, J. Chem. Phys., 1941, 9, 177-184.
- 7. B. V. Erofe'ev, Comptes Rendus de L'Académie des Sciences de l'URSS, 1946, 511.
- 8. J. D. Hancock and J. H. Sharp, J. Am. Ceram. Soc., 1972, 55, 74-77.