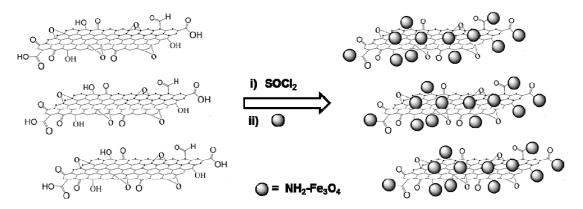
Supporting Information

A facile chemical method to produce superparamagnetic graphene

oxide-Fe₃O₄ hybrid composite and its application to the removal of


dyes from aqueous solution

Guoqiang Xie^a, Pinxian Xi^a, Hongyan Liu^a, Fengjuan Chen^a, Liang Huang^a, Yanjun Shi^a, Fengping Hou^a, Zhengzhi Zeng^a*, Changwei Shao^b, Jun Wang^b

^a Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry and Colleague of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.

^b State Key Laboratory of Advanced Ceramic Fibers & Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha 410073, P. R. China.

E-mail: zengzhzh@yahoo.com.cn; zengzhzh@lzu.edu.cn

Scheme 1. A schematic illustration for the preparation of GO-Fe₃O₄ hybrid composite.

Figure S1. Photos of the presence or absence of primary amine groups on the surface of materials confirmed by using a Kaiser test. (Only NH_2 -Fe₃O₄ and APTES exhibited classic color changes)

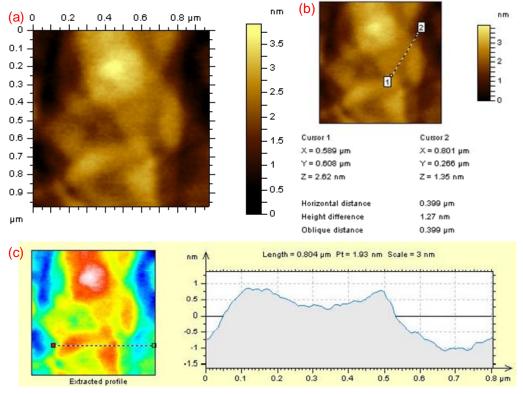
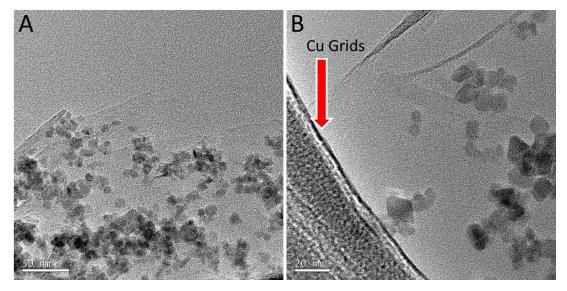



Figure S2. AFM images and cross-section analysis of GO

Figure S3. TEM images of the GO-Fe₃O₄ hybrid composite after adsorption of Methylene Blue. (Scale bar: A: 50 nm, B: 20 nm)

Figure S4. Photos of GO-Fe₃O₄ hybrid composite, GO nanosheets, Fe₃O₄ and NH₂-Fe₃O₄ nanoparticles responded to a magnet in MB solution before and after adsorption. Adsorption capacities for GO-Fe₃O₄, GO, Fe₃O₄ and NH₂-Fe₃O₄ are 17.1, 19.4, 3.1 and 4.5 mg/g, respectively. (The adsorption experiment was studied at 20 mg/L initial concentration of MB and 25 mg of each nanomaterials)

Adsorbent	Adsorption capacity (mg g ⁻¹)	Reference
GO-Fe ₃ O ₄ hybrids	167.2 for Methylene Blue 171.3 for Neutral Red	[this work]
Na-ghassoulite	135 for Methylene Blue	34(a)
kaolinite	76.9 for Methylene Blue	34(b)
tanned solid wastes	84 for Methylene Blue	34(c)
activated carbon	521 for Methylene Blue	34(d)
Surfactant-Modified	6.67 for Reactive Black 5	34(e)
Zeolite	15.66 for Reactive Red 239	
Activated Carbon/Cobalt Ferrite/Alginate Composite Beads	39.3 for Methylene Blue	34(f)
MWCNTs with Fe ₂ O ₃	42.3 for Methylene Blue 77.5 for Neutral Red	34(g)
Rhizopus oryzae Biomass	39.1 for Rhodamine B	34(h)

Table S1. Comparison	results about removal	of dyes from	aqueous solution.
1		2	1