Electronic Supporting Information (ESI) Control of Green and Red Upconversion in NaYF₄:Yb³⁺,Er³⁺ Nanoparticles by Excitation Modulation

Christian F. Gainer,^a Gihan S. Joshua^a, Channa R. De Silva^b and Marek Romanowski^{*a}

^aDepartment of Biomedical Engineering, The University of Arizona, P.O. Box 210240, Tucson, Arizona 85721, United States of America. E-mail: <u>marekrom@email.arizona.edu</u>

^b Department of Chemistry and Physics, Western Carolina University, Cullowhee, North Carolina 28723, United States of America

Fig. S1. X-ray powder diffraction (XRD) pattern of NaYF₄:Er³⁺, Yb³⁺ nanoparticles.

Fig. S2. Power density dependence of three emission peaks in NaYF₄: Yb³⁺,Er³⁺ nanoparticles. Data for visible peaks are well matched to linear fits with slopes of approximately 2, indicating 2-photon processes. Excitation was by 980 nm laser diode pulsed at 500 Hz with a 100 μ s pulse width.

Fig. S3. Left: Luminescence decay of NaYF₄: Er^{3+} , Yb³⁺ nanoparticles at several wavelengths following direct excitation of the associated transitions. Excitation and measurement matched the wavelengths listed in the legend. Right: Luminescence decay of transitions resulting in green and red emission in upconverting nanoparticles as well as the luminescence decay of NaYF₄:Yb³⁺ nanoparticles at 980 nm. Excitation for all three was 980 nm. Excitation was by an OPO tuned NdYAG laser pulsed at 20 Hz with 3 ns pulse width for all measurements.

Fig. S4. Luminescence decay measured at 980 nm following excitation by 1500 nm (red) and 800 nm (blue).

Fig. S5. Size distribution of NaYF₄: Er^{3+} , Yb³⁺ nanoparticles. The peak is at 14.3 nm.

Coefficients for rate equations presented in the main text:

$$\begin{split} C_{22} &= \frac{k_{02}N_0N_{S*}^0}{W_2 - W_S} \text{ and } C_{21} = N_2^0 - \frac{k_{02}N_0N_{S*}^0}{W_2 - W_S} \\ C_{42} &= \frac{k_{24}N_{S*}^0N_2^0}{W_4 - (W_S + W_2)} - \frac{k_{02}k_{24}N_0N_{S*}^0}{W_4(W_2 - W_S) - (W_S^2 + W_2^2)}, \\ C_{43} &= \frac{k_{02}k_{24}N_0N_{S*}^0}{W_4(W_2 - W_S) - 2(W_2W_S - W_S^2)}, \text{ and } C_{41} = -(C_{42} + C_{43}) \\ C_{31} &= -(C_{32} + C_{33} + C_{34} + C_{35}), \\ C_{32} &= \frac{k_{13}N_{S*}^0C_{11}}{W_3 - W_S - W_{10}}, C_{33} = \frac{\left(\frac{W_{43}C_{42} - \frac{k_{13}N_{S*}^0C_{21}}{W_2}\right)}{W_3 - W_S - W_2}}{W_3 - W_S}, \text{ and } C_{35} = \frac{W_{43}C_{41}}{W_3 - W_4} \end{split}$$