Supplementary information for:

Bio-modified $\mathrm{Fe}_{3} \mathrm{O}_{4}$ core/Au shell nanoparticles for targeting and multimodal imaging of cancer cell

Ting Zhou, ${ }^{\text {a }}$ Baoyan Wu ${ }^{\text {a }}$ and Da Xing* ${ }^{\text {a }}$
${ }^{\text {a }}$ MOE key Laboratory of Laser Life Science \& Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China. Tel: (+86-20) 8521-0089; Fax: (+86-20) 8521-6052.

*Corresponding author Email: xingda@scnu.edu.cn

Figure S 1 . Standard curves of $\mathrm{Fe}_{3} \mathrm{O}_{4} @ \mathrm{Au}$ nanoparticles and gold nanoparticles.

Based on the absorption peak of gold nanoparticle, a 532 nm pulse laser was used as the irradiation source in our photoacoustic imaging experiment. Therefore it is reasonable to detect the absorption cross-sections of the nanoparticles at 532 nm . We have prepared the standard solutions of $\mathrm{Fe}_{3} \mathrm{O}_{4} @ \mathrm{Au}$ nanoparticles and gold nanoparticles and measured their absorbance at 532 nm . Then we drew the standard curves to determine their molar absorption coefficient.

The fitted linear regression equation of gold nanoparticles and $\mathrm{Fe}_{3} \mathrm{O}_{4} @ \mathrm{Au}$ nanoparticles are

$$
y=0.5587 x+0.04315
$$

and

$$
y=0.37082 x+0.04132
$$

where y is the absorbance, x is the gold concentration of nanoparticles and $\mathrm{Fe}_{3} \mathrm{O}_{4} @ \mathrm{Au}$ nanoparticles (unit mM).

According to the Lambert-beer Law, the slope of the standard curve is the product of molar absorption coefficient and path length. In our experiment, we used the 96 -well plate assay with a path length of 0.5 cm . So the molar absorption coefficient of gold nanoparticles at 532 nm is

$$
\varepsilon_{1}=\frac{0.5587 \mathrm{mM}^{-1}}{0.5 \mathrm{~cm}} \approx 1.12 \times 10^{3} \mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}
$$

And the molar absorption coefficient of gold nanoparticles at 532 nm is

$$
\varepsilon_{2}=\frac{0.37082 \mathrm{mM}^{-1}}{0.5 \mathrm{~cm}} \approx 0.75 \times 10^{3} \mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}
$$

The absorption cross sections are proportional to the intensity of the absorption (or emission) between the two levels involved. The absorption of light is in general governed by the Beer-Lambert Law, for optically thin samples:

$$
\ln \left(\frac{I_{0}(\lambda)}{I(\lambda)}\right)=\sigma(\lambda) \times l \times c^{\prime}
$$

where $I_{0}(\lambda)$ and $I(\lambda)$ are the transmitted light intensities at a wavelength λ with and without sample present, l is the path length, and c^{\prime} is the molecule concentration. The constant σ is the absorption cross section. If l is in centimeters, and c^{\prime} in molecules cm^{-3}, then σ has units of cm^{2} molecule ${ }^{-1}$

$$
A(\lambda)=\lg \left(\frac{I_{0}(\lambda)}{I(\lambda)}\right)=\varepsilon(\lambda) \times l \times c
$$

where the $\mathrm{A}(\lambda)$ is the absorbance at a wavelength λ, c is the molar concentration (unit $\mathrm{M})$.

So the absorption cross-section at a wavelength λ

$$
\sigma(\lambda)=\frac{\varepsilon(\lambda)}{N_{A}} \times \operatorname{In} 10
$$

The absorption cross-sections of gold nanoparticles $\left(\sigma_{1}\right)$ and $\mathrm{Fe}_{3} \mathrm{O}_{4} @ \mathrm{Au}$ nanoparticles $\left(\sigma_{2}\right)$ at 532 nm are

$$
\begin{aligned}
& \sigma_{1}=1.12 \times 10^{3} \times 3.825 \times 10^{-24} L \cdot \mathrm{~cm}^{-1} \approx 4.28 \times 10^{-18} \mathrm{~cm}^{2} \\
& \sigma_{2}=0.75 \times 10^{3} \times 3.825 \times 10^{-24} L \cdot \mathrm{~cm}^{-1} \approx 2.87 \times 10^{-18} \mathrm{~cm}^{2}
\end{aligned}
$$

The absorption cross-sections of Fe3O4@Au are close to that of gold nanoparticles.

Figure S2. Magnetic separation effect of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ nanoparticles, $\mathrm{Fe}_{3} \mathrm{O}_{4} @ \mathrm{Au}$ nanoparticles with and without removing free gold nanoparticles.

As shown in figure S 2 , similar to $\mathrm{Fe}_{3} \mathrm{O}_{4}$ nanoparticles, $\mathrm{Fe}_{3} \mathrm{O}_{4} @$ @ Au nanoparticles are attracted to the walls of the vial when a magnet is present. And there are still a few free gold nanoparticles of pink color remaining in the solution before purification. The free gold nanoparticles were separated by a magnet. Their absorbance at 532 nm was measured to be 0.0579 . Basing on the standard equation of gold nanoparticles ($\mathrm{y}=$ $0.5587 \mathrm{x}+0.04315$, figure S 1), the Au concentration of free gold nanoparticles was calculated to be 0.026 mM , which is 2.9% of the total Au concentration.

