Supporting Information for:

Preparation and Properties of Two-Leg Ladder Polymers Based on Polydiacetylenes

Hideyuki Tabata, Hiroaki Tokoyama, Hideo Yamakado and Tsunehisa Okuno*

Department of Material Science and Chemistry, Wakayama University, 930 Sakaedani, Wakayama 640-8510, JAPAN

okuno@center.wakayama-u.ac.jp

List of Figures

Figure S1. Preparation of monomer 1.	S3
Figure S2. ¹ H NMR spectra of 2.	S4
Figure S3. ¹ H NMR spectra of 3.	S5
Figure S4. ¹³ C NMR spectrum of 3.	S6
Figure S5. ¹ H NMR spectra of 4.	S7
Figure S6. ¹³ C NMR spectrum of 4.	S 8
Figure S7. IR spectrum of 4.	S 8
Figure S8. ¹ H NMR spectra of monomer 1.	S9
Figure S9. ¹³ C NMR spectrum of monomer 1.	S10
Figure S10. IR spectrum of monomer 1.	S10
Figure S11. IR spectrum of polymer 1.	S11

1. General Procedure.

All chemicals were purchased from Kanto Chemical Co. Ltd. or Sigma Aldrich Co. Ltd. and used without further purification. Gel permeation chromatography (GPC) was performed on a JAI LC-918 equipped with JAIGEL -1H and -2H columns.

¹H and ¹³C NMR spectra were recorded on a JEOL JNM-ECA-400 spectrometer in deuterated solvents (chloroform-*d* or acetone-*d*₆) with tetramethylsilane as an internal standard. ¹H NMR data are reported as follows: chemical shift in ppm downfield from tetramethylsilane (δ scale), multiplicity (s = singlet, d = doublet, t = triplet, dd = double doublet, tt = triple triplet and br. = broad), coupling constant (Hz) and integration. ¹³C NMR chemical shifts are reported in ppm downfield from tetramethylsilane (δ scale). All ¹³C NMR spectra were obtained with complete proton decoupling.

IR spectra were recorded on a JASCO FT/IR-420 spectrometer by using a KBr pellet. UV-Vis absorption spectrum was measured on a HITACHI U-2010 spectrometer. UV-Vis-NIR spectrum in solid state was measured on a SHIMADZU UV-3100PC spectrometer with an ISR-3100 integrating sphere attachment. Elemental analysis was recorded on a J-SCEINCE LAB MICRO CORDER JM10.

X-ray crystallographic data were obtained by a RIGAKU Saturn 724+ CCD device with a monochromatic Mo $K\alpha$ radiation. Powder X-ray diffraction (XRD) was recorded on a RIGAKU MiniFlex II diffractometer.

Polymerization of monomer **1** was performed in an electric oven. The powdered monomer was sealed into glass tubes with exchange gas of argon. The tubes were annealed at 100 °C for 400 hours. The conductivity of the doped polymer was measured by 2-probe method, where the polymer in a pellet sealed with excess amounts of iodine was placed in an electric oven.

2. Materials.

Figure S1. Preparation of monomer 1.

Figure S2. ¹H NMR spectra of 2.

Figure S4. ¹³C NMR spectrum of 3.

Figure S5. ¹H NMR spectra of 4.

Figure S6. ¹³C NMR spectrum of 4.

Figure S7. IR spectrum of 4.

Figure S8. ¹H NMR spectra of monomer 1.

Figure S9. ¹³C NMR spectrum of monomer 1.

Figure S10. IR spectrum of monomer 1.

3. Characterization of Polymer 1.

Figure S11. IR spectrum of polymer 1.