Electronic Supporting Information

Tuning spectral properties of phenothiazine based donor- π -acceptor dyes for efficient dye-sensitized solar cells

Magdalena Marszalek,^a Satyawan Nagane,^bAmol Ichake^b, Robin Humphry-Baker,^a Vincent Paul^{*b} Shaik M. Zakeeruddin,^{*a}and Michael Grätzel^{*a}

^aLaboratory for Photonics and Interfaces, EcolePolytechniqueFédérale de Lausanne, 1015, Lausanne, Switzerland. E-mail: <u>shaik.zakeer@epfl.ch</u>, <u>michael.graetzel@epfl.ch</u>Fax: +41 (0)21 693 61 00; Tel: +41 (0)21 693 31 12;

^b Room 288, Organic Chemistry Division, National Chemical Laboratory, Pashan Road, Pune 411008, India. E-mail: <u>vp.swamy@ncl.res.in</u> Fax: +91 (0)20 2590 2629; Tel: +91 (0)20 2590 2286;

Figure S 1 Differential pulse voltammograms of the dye V5 and V7 in DMF with a TBAPF₆ as a supporting electrolyte and ferrocene as an internal reference. A value of 0.72 V vs. NHE was taken as an oxidation potential of ferrocene and the plots were normalized accordingly.

Table S1 The relative distance between the conduction band edge position and the quasi-Fermi level derived from the cell capacitance obtained via EIS measurement under 0.5 Sun.

Dye	E_{C} - E_{Fn} / eV
V5	0.10
V7	0.11

Figure S2 Charge collection efficiency plots for the cells with V5 and V7 dyes obtained from EIS measurements under 0.5 Sun light intensity illumination.