Supporting information for:

Hierarchical Magnetic Core-Shell Nanoarchitectures: Non-linker Reagent Synthetic Route and Applications in a Biomolecule Separation System

Zhen Liu,^{a,b} Meng Li,^{a,b} Fang Pu,^a Jinsong Ren,^{*,a} Xinjian Yang,^{a,b} and Xiaogang Qu^a

^a Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (P. R. China).

^b Graduate School of the Chinese Academy of Sciences, Beijing 100039 (P. R. China).
Fax: (+86) 0431-85262625; Tel: (+86) 0431-85262625
E-mail: jren@ciac.jl.cn; xqu@ciac.jl.cn

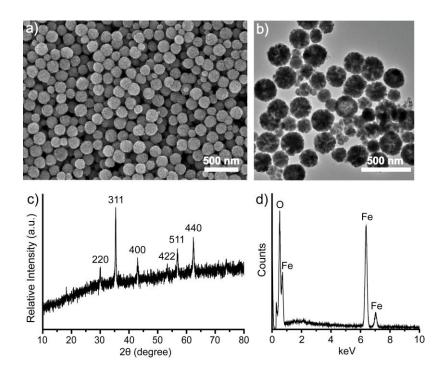


Figure S1. SEM image (a), TEM image (b), wide-angle XRD pattern (c) and EDS spectrum (d) of magnetic Fe_3O_4 nanoparticles.

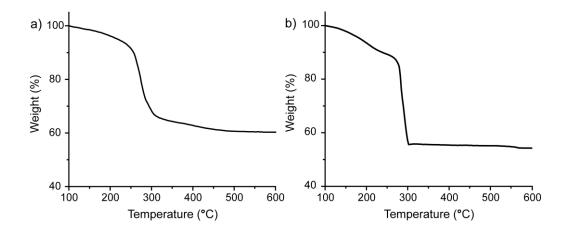
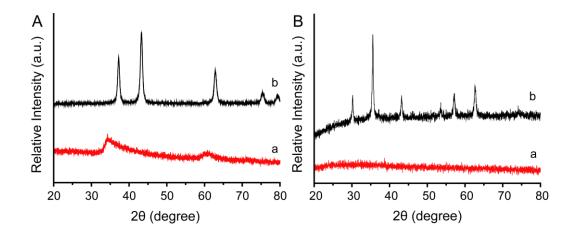
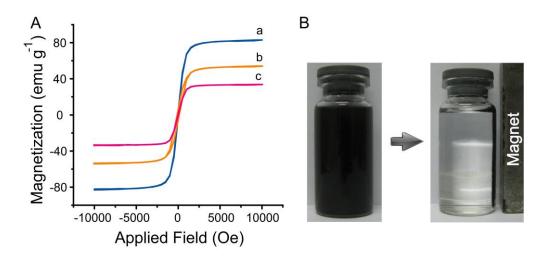




Figure S2. TGA curves of α -Ni(OH)₂ (a) and amorphous Co(OH)₂ (b) synthesized through the same solvothermal method. The results present above were applied to confirm the calcining temperature and duration.

Figure S3. A: Wide-angle XRD patterns of α -Ni(OH)₂ composite (a) and NiO coating materials(b). B: Wide-angle XRD patterns of amorphous Co(OH)₂ composite (a) and Co₃O₄ coating materials (b). Control experiments were carried out to evidence the detailed components of the coating shells.

Figure S4. A: Room-temperature field-dependent magnetization curves of a) Fe_3O_4 , b) $Fe_3O_4@NiO$, and c) $Fe_3O_4@Co_3O_4$. B: photograph shows the strong attraction of the as-prepared $Fe_3O_4@NiO$ heteronanostructures suspended in water toward an assistant magnet.

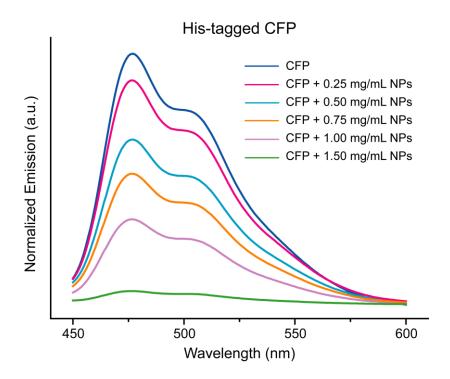
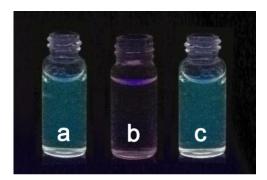



Figure S5. The fluorescence spectra corresponding to the change of emission intensity during the His-tagged CFP capturing experiments incubated with different concentrations of $Fe_3O_4@NiO$ microspheres.

Figure S6. Fluorescent images from the solutions of His-tagged CFP (a) before and (b) after treatment with $Fe_3O_4@NiO$ microspheres and (c) after treating protein-bound $Fe_3O_4@NiO$ with imidazole solution (irradiation upon UV light).

Cycle	Practical Fluorescent Percentage (%)	Normalized Fluorescent Percentage (%)
1	91.39	100
2	90.93	99.50
3	90.28	98.79
4	89.11	97.50
5	89.59	98.03

Table S1. Detailed magnetic purification and recycling efficiency of Fe_3O_4 @NiO microspheres for selective separation of His-tagged CFP from cell lysate. Normalized fluorescent percentages are calculated form practical fluorescent percentage by recognizing the value of the first cycle as 100%.