Supporting Information for

Supramolecular Polymer Nanowires: Preparation and Orthogonal

Modification of Their Photophysical Properties

Ting Lei, Chu-Yang Cheng, Zi-Hao Guo, Cui Zheng, Ye Zhou, Dehai Liang,* Jian Pei*

Beijing National Laboratory for Molecular Sciences, Key Laboratories of Bioorganic Chemistry and Molecular Engineering and of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871

jianpei@pku.edu.cn

Table of Contents

1.	Synthetic Procedures and Characterization	S2
2.	¹ H and ¹³ C NMR spectra	S13

1. Synthetic Procedures and Characterization

Compound **TPPOH**, **TPABTOH**, **HexBTOH**, **MeBTOH** and **DHBT** were synthesized according to the literature. ¹⁻⁵

Compound 3. A suspension of 2 (450 mg, 0.34 mmol) in DMF (40 mL) was added K₂CO₃ (567 mg, 4.11 mmol) and heated to 100 under nitrogen atmosphere. After 1 h, a solution of 12-bromododecanol (300 mg, 1.13 mmol) in DMF (10 mL) was added to the mixture slowly and then the mixture was stirred over night. The mixture was concentrated under reduced pressure. The residue was added dilute hydrochloric acid and extracted with CH₂Cl₂. The combined organic extracts were washed with brine, and then dried with Na₂SO₄. After removal of the solvents under reduced pressure, the residue was purified by column chromatography over silica gel (CH_2Cl_2 : EtOAc = 5:1) to afford compound **3** as a white solid in 79% yield (505 mg). ¹H NMR (CDCl₃, 300 MHz, ppm): δ 7.80-7.77 (d, J = 8.1 Hz, 6H), 7.54-7.51 (dd, J = 8.1, 1.5 Hz, 6H), 7.00-6.99 (d, J = 1.5 Hz, 6H), 6.31-6.30 (d, J = 8.7 Hz, 3H), 6.22-6.18 (dd, J = 9.0, 2.4 Hz, 3H), 5.83-5.82 (d, J = 2.4 Hz, 3H), 3.66-3.59 (m, 12H), 1.58-1.52 (m, 6H), 1.28-1.22 (m, 54H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 158.9, 150.7, 150.1, 141.7, 139.4, 136.2, 131.4, 130.6, 127.0, 124.8, 122.7, 121.7, 112.4, 109.2, 67.8, 66.2, 63.1, 32.8, 29.53, 29.49, 29.48, 29.43, 29.37, 29.30, 29.12, 25.90, 25.70, 25.68. MALDI-TOF MS: Calcd for C₉₉H₁₀₂Br₆O₆, 1867.3; Found, 1867.6.

Compound 4. To a solution of p-toluenesulfonyl chloride (620 mg, 3.25 mmol) in CH₂Cl₂ (10 mL) was added dropwise to a mixture of 3 (505 mg, 0.27 mmol) and DMAP (5 mg) in CH₂Cl₂/NEt₃ (30 mL/10 mL) in ice bath. After stirred at room temperature for 5 h, the mixture was neutralized with dilute hydrochloric acid and extracted with CH₂Cl₂. The combined organic extracts were washed with brine, and then dried with Na₂SO₄. After removal of the solvents under reduced pressure, the residue was purified by column chromatography over silica gel (PE : $CH_2Cl_2 = 1:1$ to CH_2Cl_2) to afford 4 as a white solid in 66% yield (414 mg). ¹H NMR (CDCl₃, 300 MHz, ppm): δ 7.80-7.78 (d, J = 8.1 Hz, 12H), 7.54-7.51 (dd, J = 8.1, 1.8 Hz, 6H), 7.35-7.33 (d, J = 8.1 Hz, 6H), 7.00-6.99 (d, J = 1.5 Hz, 6H), 6.31-6.28 (d, J = 9.0 Hz, 3H), 6.22-6.19 (dd, J = 9.0, 2.7 Hz, 3H), 5.83-5.82 (d, J = 2.4Hz, 3H), 4.04-4.00 (t, J = 6.3 Hz, 6H), 3.63-3.59 (t, J = 6.6 Hz, 6H), 2.44 (s, 9H), 1.65-1.52 (m, 6H), 1.24-1.18 (m, 54H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 159.2, 150.8, 150.3, 144.5, 141.9, 139.6, 136.3, 133.8, 131.5, 130.7, 129.8, 127.9, 127.1, 124.9, 122.7, 121.7, 112.9, 109.2, 70.6, 68.0, 66.4, 29.41, 29.38, 29.29, 29.18, 28.91, 28.88, 25.9, 25.4, 21.5. MALDI-FTICR MS: Calcd. for $[C_{120}H_{120}Br_6O_{12}S_3 + Na]^+$, 2352.2912; Found, 2352.3009

Compound 5. Α well-degassed solution of 4 (200)mg, 0.086 mmol) and 4-(methoxycarbonyl)phenylboronic pinacol ester (180 mg, 0.69 mmol) in THF (30 mL) was added premixed solution of Pd₂(dba)₃ (20 mg) and PCy₃ (30 mg) in THF (5 mL) and 3 mL of aqueous K₂CO₃ solution (355 mg, 2.57 mmol) under nitrogen atmosphere. After refluxed for 20 h under nitrogen atmosphere, the mixture was added water and extracted with CH₂Cl₂. The combined organic extracts were washed with brine, and then dried with Na₂SO₄. After removal of the solvents under reduced pressure, the residue was purified by column chromatography over silica gel (PE : CH_2Cl_2 : EtOAc = 10 : 4 : 1 to 3 : 3 : 1) to afford 5 as a white solid in 73% yield (167 mg). ¹H NMR (CDCl₃, 300 MHz, ppm): δ 8.10-8.07 (d, J = 7.8 Hz, 6H), 7.79-7.76 (d, J = 8.1 Hz, 6H), 7.70-7.66 (dd, J = 9.3, 0.9 Hz, 6H), 7.64-7.62 (d, J =8.1 Hz, 12H), 7.33-7.30 (d, J = 8.4 Hz, 18H), 7.17 (d, J = 1.2 Hz, 6H), 6.49-6.46 (d, J = 8.7Hz, 3H), 6.22-6.18 (dd, J = 8.7, 2.1 Hz, 3H), 5.95-5.94 (d, J = 2.4 Hz, 3H), 4.02-3.97 (t, J = 6.3 Hz, 6H), 3.86 (s, 18H), 3.58-3.54 (t, J = 6.0 Hz, 6H), 2.42 (s, 9H), 1.64-1.55 (m, 6H), 1.50-1.43 (m, 6H), 1.25-1.13 (m, 48H). ¹³C-NMR (CDCl₃, 100 MHz, ppm): δ 166.5, 158.6, 151.8, 149.8, 144.8, 144.6, 141.7, 141.1, 140.3, 137.3, 133.2, 131.1, 130.0, 129.7, 128.8,

127.8, 127.7, 126.6, 125.2, 122.0, 121.1, 112.1, 109.2, 70.7, 67.7, 66.9, 51.9, 29.35, 29.26, 29.1, 28.8, 28.7, 25.9, 25.2, 21.6. MALDI-TOF MS: Calcd. for C₁₆₈H₁₆₂O₂₄S₃, 2660.0; Found, 2660.4.

General Procedures for the Synthesis Compound 6, 7, 8 and 9

To a solution of **5** (0.038 mmol) in DMF (20 mL) was added **TPPOH**, **TPABTOH**, **MeBTOH**, or **HexBTOH** (0.15 mmol), K₂CO₃ (0.38 mmol) and KI (10 mg). After stirred at 80 °C under nitrogen atmosphere overnight, the mixture was concentrated under reduced pressure. The residue was added dilute hydrochloric acid and extracted with CH₂Cl₂. The combined organic extracts were washed with brine, and then dried with Na₂SO₄. After removal of the solvents under reduced pressure, the residue was purified by column chromatography over silica gel (CH₂Cl₂ to CH₂Cl₂: EtOAc = 50 : 1).

Compound **6** (Yield: 39%). ¹H NMR (CDCl₃, 300 MHz, ppm): δ 8.87 (s, 24H), 8.15-8.09 (m, 24H), 7.94-7.91 (d, *J* = 7.8 Hz, 6H), 7.76-7.73 (d, *J* = 7.8 Hz, 18H), 7.62-7.56 (m, 18H), 7.29-7.23 (m, 18H), 7.14 (s, 6H), 6.44-6.41 (d, *J* = 9.0 Hz, 3H), 6.19-6.16 (d, *J* = 8.7 Hz, 3H), 5.92 (s, 3H), 4.21-4.17 (t, *J* = 6.3 Hz, 6H), 3.84 (s, 18H), 3.57-3.53 (t, *J* = 6.0 Hz, 6H), 1.98-1.88 (m, 6H), 1.59 (m, 81H), 1.25-1.19 (m, 60H), -2.74(s, 6H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 166.5, 158.9, 158.7, 150.4, 149.8, 144.8, 141.0, 140.2, 139.2, 137.3, 135.6, 134.5, 131.1, 130.0, 128.8, 127.6, 126.6, 123.6, 122.0, 121.0, 120.2, 119.9, 112.7, 68.2, 67.8, 66.9, 51.9, 34.9, 31.7, 29.7, 29.55, 29.52, 29.45, 29.36, 29.2, 26.2, 25.9. MALDI-TOF MS: Calcd. for C₃₁₅H₃₀₀N₁₂O₁₈, 4541.3; Found, 4541.3.

Compound 7 (Yield: 63%). ¹H NMR (CDCl₃, 300 MHz, ppm): δ 8.09-8.06 (d, J = 7.8 Hz, 6H), 7.92-7.85 (m, 12H), 7.72 (d, J = 0.9 Hz, 6H), 7.70-7.66 (dd, J = 8.1, 1.2 Hz, 6H), 7.63-7.60 (d, J = 8.4 Hz, 12H), 7.32-7.27 (m, 24H), 7.24-7.17 (m, 24H), 7.11-7.04 (m, 12H), 6.49-6.46 (d, J = 8.7 Hz, 3H), 6.22-6.19 (dd, J = 8.7, 2.1 Hz, 3H), 5.95-5.94 (d, J = 2.1 Hz, 3H), 4.04-4.00 (t, J = 6.6 Hz, 6H), 3.86 (s, 18H), 3.58-3.54 (t, J = 6.0 Hz, 6H), 1.84-1.75 (m, 6H), 1.51-1.40 (m, 6H), 1.27-1.17 (m, 48H). ¹³C-NMR (CDCl₃, 100 MHz, ppm): δ 166.5, 159.4, 158.7, 154.3, 154.1, 151.9, 149.8, 147.9, 147.5, 144.8, 141.7, 141.1, 140.3, 137.3, 132.4, 132.1, 131.1, 131.0, 130.3, 130.0, 129.9, 129.7, 129.3, 128.7, 127.7, 127.4, 127.3, 126.6, 124.9, 123.3, 122.9, 122.0, 121.1, 114.7, 112.2, 109.2, 68.1, 67.0, 52.0, 29.5, 29.40, 29.35, 29.32, 29.27, 29.1, 26.0, 25.9. MALDI-TOF MS: Calcd. for C₂₃₇H₂₀₁N₉O₁₈S₃, 3558.4; Found, 3558.0.

Compound **8** (Yield: 51%). ¹H NMR (CDCl₃, 300 MHz, ppm): δ 8.09-8.06 (d, J = 7.8 Hz, 6H), 7.93-7.89 (m, 12H), 7.70 (s, 6H), 7.69-7.66 (d, J = 8.1 Hz, 6H), 7.31-7.28 (d, J = 8.4 Hz, 12H), 7.17 (s, 6H), 7.08-7.04 (m, 12H), 6.49-6.46 (d, J = 8.7 Hz, 3H), 6.22-6.19 (dd, J = 8.7, 2.4 Hz, 3H), 5.95 (d, J = 2.1 Hz, 3H), 4.04-4.00 (t, J = 6.6 Hz, 6H), 3.88 (s, 9H), 3.86 (s, 18H), 3.58-3.54 (t, J = 6.0 Hz, 6H), 1.84-1.72 (m, 6H), 1.50-1.40 (m, 6H), 1.32-1.17 (m, 36H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 166.5, 159.7, 159.3, 158.7, 154.2, 149.8, 144.8, 141.7, 141.1, 140.3, 132.4, 132.2, 130.34, 130.30, 129.98, 129.95, 129.7, 128.7, 127.7, 127.4, 127.3, 126.6, 122.0, 121.1, 114.6, 114.1, 112.2, 109.2, 68.1, 67.7, 66.9, 55.4, 51.9, 29.46, 29.43, 29.38, 29.31, 29.28, 29.23, 29.1, 26.0, 25.9. MALDI-TOF MS: Calcd. for C₂₀₄H₁₈₀N₆O₂₁S₃, 3147.2; Found, 3147.2.

Compound **9** (Yield: 82%). ¹H NMR (CDCl₃, 300 MHz, ppm): δ 8.08-8.06 (d, J = 7.8 Hz, 6H), 7.92-7.89 (d, J = 8.4 Hz 12H), 7.70 (s, 6H), 7.72 (d, J = 0.9 Hz, 6H), 7.65 (m, 6H), 7.63-7.60 (d, J = 8.4 Hz, 12H), 7.30-7.28 (d, 12H), 7.17 (d, J = 2.1 Hz, 6H), 7.06-7.04 (d, J = 6.6 Hz 12H), 6.49-6.46 (d, J = 8.7 Hz, 3H), 6.22-6.19 (dd, J = 8.7, 2.1 Hz, 3H), 5.95-5.94 (d, J = 2.1 Hz, 3H), 4.04-4.00 (q, 12H), 3.86 (s, 18H), 3.58-3.50 (t, J = 6.0 Hz, 6H), 1.85-1.75 (m, 12H), 1.48-1.26 (m, 72H), 1.17-0.92 (t, 9H). ¹³C-NMR (CDCl₃, 100 MHz, ppm): δ 166.5, 159.4, 158.7, 154.2, 151.9, 149.8, 144.8, 141.7, 141.1, 140.3, 137.4, 132.3, 131.2, 130.3, 130.0, 129.9, 129.8, 128.8, 127.7, 127.4, 126.6, 125.2, 122.1, 121.1, 114.7, 112.2, 110.7, 109.2, 68.1, 67.8, 67.0, 52.0, 31.6, 29.51, 29.50, 29.48, 29.42, 29.35, 29.33, 29.27, 29.15, 26.0, 25.9, 25.7, 22.6, 14.1, MALDI-TOF MS: Calcd. for C₂₁₉H₂₁₀N₆O₂₁S₃, 3357.5; Found, 3358.0.

General Procedures for the Synthesis of Monomers

A solution of **6**, **7**, **8**, or **9** (0.005 mmol) in THF (10 mL) was added aqueous LiOH (0.3 mmol) 1 mL. After refluxed for 24 h, the mixture was quenched with dilute hydochloric acid. The aqueous layer was extracted with EtOAc. The combined organic extracts were washed with brine and then dried with Na₂SO₄. After removal of the solvernts under reduced pressure, the residue was washed with ethanol and filtrated under reduced pressure to afford all the monomers.

1-TPP. (Yield: > 90%): ¹H NMR (THF-d⁸, 400 MHz, 50 °C, ppm): δ 10.59 (s, 6H), 8.81-8.79 (m, 24H), 8.12-8.09 (m, 24H), 8.05-8.03 (d, *J* = 8.0 Hz, 18H), 7.96-7.94 (d, *J* = 8.0 Hz, 18H), 7.79-7.75 (m, 18H), 7.63-7.62 (m, 18H), 7.31-7.29 (m, 12H), 7.24-7.22 (m, 12H), 6.51-6.49 (d, *J* = 8.4 Hz, 3H), 6.14-6.11 (dd, *J*₁ = 8.4 Hz, *J*₂ = 2.0 Hz, 3H,), 5.92 (d, *J*₂ = 2.0 Hz, 3H), 4.19-4.16 (t, *J* = 6.4 Hz, 6H), 3.52-3.49 (t, *J* = 6.8 Hz, 6H), 1.93-1.86 (m, 6H), 1.59-1.57 (m, 81H), 1.43-1.20 (m, 60H), -2.58 (s, 6H). MALDI-TOF MS: Calcd. for C₃₀₉H₂₈₈N₁₂O₁₈, 4457.2; Found, 4457.7.

1-BTTPA: (Yield: >90%): ¹H-NMR (DMSO-d⁶: C₂D₄Cl₄ = 1 : 1, 400 MHz, 50 °C, ppm): δ 8.16-8.14 (d, *J* = 8.0 Hz, 6H), 7.86-7.81 (m, 12H), 7.72-7.67 (m, 12H), 7.54-7.52 (d, *J* = 7.6 Hz, 12H), 7.28-7.21 (m, 24H), 7.16-7.0 (m, 30H), 6.96-6.93 (m, 6H), 6.41-6.39 (d, 3H), 6.16-6.14 (d, 3H), 5.85 (s, 3H), 3.97-3.94 (t, *J* = 6.0 Hz, 6H), 3.20-3.50 (overlapped with H₂O signal, 6H), 1.73-1.70 (m, 6H), 1.53-1.51 (m, 6H), 1.49-1.11 (m, 48H). COOH hydrogen did not observed because of low solubility. MALDI-TOF MS: Calcd. for C₂₃₁H₁₈₉N₉O₁₈S₃, 3474.3; Found, 3474.1.

1-BTMe: (Yield: >90%): ¹H-NMR (THF-d⁸, 400 MHz, 50 °C, ppm): δ 10.64 (s, 6H), 8.17-8.14 (d, *J* = 8.0 Hz, 6H), 8.00-7.96 (m, 12H), 7.76-7.74 (m, 12H), 7.36-7.34 (m, 12H), 7.27 (s, 6H), 7.04-7.00 (m, 12H), 6.60-6.6.57 (d, *J* = 8.8 Hz, 3H), 6.22-6.19 (dd, *J* = 8.7 Hz, *J* = 2.4 Hz, 3H), 5.92 (d, *J* = 2.4 Hz, 3H), 4.04-4.01 (t, *J* = 6.4 Hz, 6H), 3.84 (s, 9H), 3.54-3.52 (m, 6H), 1.79-1.75 (m, 6H), 1.50-1.43 (m, 6H), 1.35-1.12 (m, 36H). MALDI-TOF MS: Calcd. for C₁₉₈H₁₆₈N₆O₂₁S₃, 3063.2; Found, 3063.7.

1-BTHex: (Yield: >90%): ¹H-NMR (DMSO-d⁶: C₂D₄Cl₄ = 1 : 1, 400 MHz, 50 °C, ppm): δ 12.08 (s, broad, 2H) 8.16-8.14 (d, *J* = 8.0 Hz, 6H), 7.85-7.83 (d, *J* = 7.6 Hz 12H), 7.71-7.69 (m, 6H), 7.60 (s, 6H), 7.53-7.51 (m, 12H), 7.20-7.18 (m, 12H), 7.30-7.28 (d, 12H), 7.10 (s, 6H), 6.96-6.92 (m, 12H), 6.18-6.17 (d, *J* = 6.4 Hz, 3H), 5.87 (s, 3H), 5.46 (s, 3H), 3.96-3.93 (t, 12H), 3.52 (s, 6H), 1.75-1.70 (m, 12H), 1.41-1.11 (m, 72H), 0.90-0.86 (t, *J* = 6.7 Hz, 9H). MALDI-TOF MS: Calcd. for C₂₁₃H₁₉₈N₆O₂₁S₃, 3273.4; Found, [M]⁺ 3274.0, [M+Na]⁺ 3297.0.

Reference:

- 1. Nakagawa, K.; Tanaka, K.; Kitagawa, T.; Sadaoka, Y. J. Mater. Chem., 1998, 8, 1199–1204.
- 2. Ku, S.-Y.; Wong, K.-T.; Bard, A. J. J. Am Chem. Soc. 2008, 130, 2392-2393.
- Omer, K. M.; Ku, S.-Y.; Wong, K.-T.; Bard, A. J. J. Am Chem. Soc. 2009, 131, 10733–10741.
- Liu, J.; Guo X.; Bu L.; Xie, Z.; Cheng, Y.; Geng, Y.; Wang, L.; Jing, X.; Wang, F. Adv. Func. Mater., 2007, 17, 1917-1925.
- Zhang, X.; Gorohmaru, H.; Kadowaki, M.; Kobayashi, T.; Ishi-i, T.; Thiemann T.; Mataka, S. J. Mater. Chem., 2004, 14, 1901-1904.

2. ¹H NMR and ¹³C NMR Spectra

Compound 3

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is O The Royal Society of Chemistry 2011

Compound 5

S18

Compound 6

Compound 7

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is O The Royal Society of Chemistry 2011

S23

Compound 1-TPP

Compound 1-BTTPA

Compound 1-BTMe

Compound 1-BTHex

