Electronic Supplementary Information

Birnessite-type Manganese Oxides Nanosheets with Hole Acceptor Assisted

Photoelectrochemical Activity in Response to Visible Light

Yu-Kuei Hsu,¹ Yan-Gu Lin,² Ying-Chu Chen,² Li-Chyong Chen,^{2,*} and Kuei-Hsien Chen^{3,}

¹ Department of Opto-Electronic Engineering, National Dong Hwa University, Hualien, 97401, Taiwan

² Center for Condensed Matter Sciences, National Taiwan University, Taipei, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwa

³ Institute of Atomic and Molecular Science, Academia Sinica, Taipei

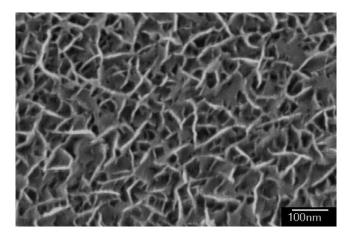


Figure S1 SEM top-view image of hierarchically structured nanosheets deposited on ITO by means of anodic electroplating at a current density of 0.25 mA/cm^2 for 250s.

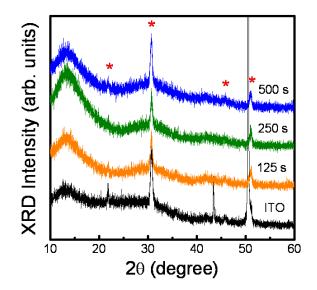


Figure S2 XRD patterns of MnO₂ nanosheets, fabricated via anodic electrodeposition, for different deposition times.

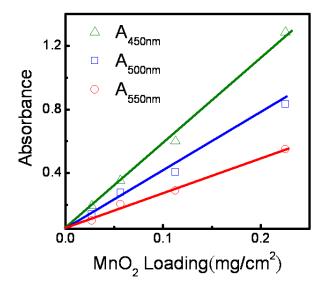


Figure S3 Absorbance at 450, 500 and 550 nm as a function of MnO_2 nanosheets deposit.

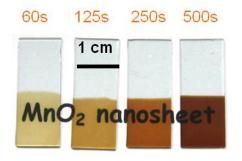


Figure S4 Photographs of MnO₂ nanosheets on ITO.

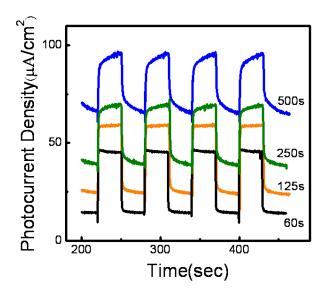


Figure S5 Photocurrent-time behaviour of MnO_2 nanosheets with different deposition times in the presence of methanol.