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Supplementary Information

The chemical structure and *H NMR spectrum of ZMelml are shown in Fig. S1a and Fig. S1b, respectively.
_ F F
O
/§N +/6\/ F
i N X y
\?’ FF

Fig. S1a Chemical structure of ZMelml. The average values of x and y are about 6.5+0.5 and 3.5£0.5, respectively.
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Fig. S1b *H NMR spectrum of ZMelml. &; (400 MHz; CDCls; Me,Si) 10.43-9.76 (m, N*CHN), 7.89-7.10 (m, NCH and N*CH), 4.59 (t, J = 4
Hz, 2H, N*CHy), 4.04 (s, 3H, NCHy), 3.93 (t, J = 4.4 Hz, 2H, N*CH,CH,0), 3.84-3.50 (br s, 23H, CH,CH,0), 2.49-2.32 (br m, 2H, CH.CF>).

Figs. S2 to S8 show the shear stress vs. shear rate plots, at selected temperatures, for ZMelml, ZMelmTf,N, mPEG16Melml,
mPEG12Melml, mPEG7Melml, Zonyl® FSO-100 (ZOH), and monomethoxy-terminated PEG with an average molecular weight
of 550 g/mol (MPEG120H). ZMelmTf,N, the mPEGnMelml ILs, ZOH, and mPEG120H showed a Newtonian behavior, that is,
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a linear variation of shear stress with shear rate, over a temperature range of 25 to 95 °C. The viscosity of ZMelml could be
determined only at temperatures > 85 °C, and the shear stress vs. shear rate relationship was non-linear (cf. Fig. S2).
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Fig. S2 Shear stress vs. shear rate plots for ZMelml at 90 and 95 °C. The lines represent the Powell-Eyring fits. According to the Powell-Eyring
model, (7-7..)/(7o —7.,)=sinh(67)/(67), where 7 is the viscosity at shear rate, 5, 7, is the zero-shear-rate viscosity, 7,, is the viscosity
as y > o, and @ isatemperature-dependent relaxation time.

200
ZMelmTf,N
“E 150
L
[
>
S
2 100
-t
@ *25°C
(58]
2 5 = 50 °C
@ 475°C
e 95°C
O TN N N N Y TN TN N TN N T
0 100 200 300 400

Shear rate (1/s)

Fig. S3 Shear stress vs. shear rate plots for ZMelmTf,N at 35, 50, 75, and 95 °C.
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Fig. S4 Shear stress vs. shear rate plots for mPEG16Melml at 25, 50, 75, and 95 °C.
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Fig. S5 Shear stress vs. shear rate plots for mPEG12Melml at 25, 50, 75, and 95 °C.
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Fig. S6 Shear stress vs. shear rate plots for mPEG7Melml at 25, 50, 75, and 90 °C.
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Fig. S7 Shear stress vs. shear rate plots for ZOH (Zonyl® FSO-100, CAS no. 65545-80-4) at 25, 50, 75, and 95 °C.
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Fig. S8 Shear stress vs. shear rate plots for monomethoxy-terminated poly(ethylene glycol) (MPEGOH) with an average molecular weight of 550
g/mol (CH3(OCH,CH,)1,0H, CAS no. 9004-74-4, Aldrich) at 25, 50, 75, and 95 °C.

Fig. S9 shows a schematic of the electrolyte film used in the self-consistent mean field lattice simulations. The lattice is shown by
the hatched square with sides denoted by a, b, ¢, and d. The corner of the square lattice, denoted by O, correspondsto X =0 and Y
= 0. O is located at the mid-section along the thickness of the film. Side a represents the electrolyte—vacuum interface. The letter
V indicates vacuum or void. Periodic boundary conditions were used on sides b and d, and a reflecting boundary condition was
used on side c of the square. It was assumed that there were no composition gradients along the Z axis of the coordinate system.
The results of our simulations showed that the planes of the lamellae, or the axes of the cylinders, were oriented parallel to the
electrolyte-vacuum interface. The cylinder axes were parallel to the Z axis.
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Fig. S9 A schematic of the electrolyte film modeled in the SCMF simulations.



