Supporting Information

Porous Organic-Inorganic Hybrid Aerogels Based on Cr^{3+}/Fe^{3+} and Rigid Bridging Carboxylates

Shenglin Xiang, Lei Li, Jianyong Zhang,* Xin Tan, Huanan Cui, Jianying Shi, Yuling Hu, Liuping Chen, Cheng-Yong Su and Stuart L. James

Table of Content

Table S1-S9. Gelation tests.

Figure S1. Photographic images of the wet gel and the aerogel.

Figure S2. Powder XRD patterns.

Figure S3-S6. XPS spectra.

Figure S7. IR spectra.

Figure S8-10. Pictures of the dye removal.

Ligand	H ₃ BTC	H_2BDC	H_2BPI	$DC H_2FDC$	H_3BTB	H_2BuDC	H_2ADC
Fe:L	1.5:1	1:1	1:1	1:1	1:1	1:1	1:1
Solvent	EtOH	EtOH-DN	MF EtOH-D	OMF EtOH	EtOH-DMF	EtOH	EtOH-DMF
$c/\text{mol } L^{-1}$	0.2	0.2	0.1	0.2	0.1	0.1	0.05
Result	gel	gel	ppt	gel	ppt	gel	ppt
Time	5 s	10 min	l	5 min		5 min	
Ligand	H ₂ NDC	H ₂ FDC	H ₂ FDC	H ₄ aobtc	$H_2(4-Py)DC$	H ₂ (4-Py)DC	H ₂ (3-Py)DC
Fe:L	1:1	1:1	1:1	1.33:1	1.5:1	2:1	1.5:1
Solvent	EtOH	EtOH	EtOH-H ₂ O	DMF	DMF-H ₂ O	DMF-H ₂ O	DMF-H ₂ O
$c/\text{mol } L^{-1}$	0.1	0.1	0.1	0.075	0.02	0.02	0.02
Result	ppt	gel	gel	gel	gel	gel	gel
Time		1 min	1 min	1 d	1 d	1 d	1 d

Table S1. Gelation tests of Fe(NO₃)₃·9H₂O and various ligands.^a

^a All the tests were performed at RT unless otherwise stated. ^b FeBDC gel was formed at 80 $^{\circ}$ C. ^c ppt =

precipitate.

Table S2. Gelation tests of Cr(NO₃)₃·9H₂O and various ligands at 80 °C.

Ligand	H ₂ BDC	H ₂ BPDC	H ₂ FDC	H ₃ BTB	H ₂ BuDC	H ₂ (4-	H ₂ (3-	H ₂ ADC	H ₂ NDC
						PyDC)	Py)DC		
Cr:L	0.67:1	0.67:1	0.67:1	1:1	0.67:1	1:1	1:1	0.67:1	0.67:1
Solvent	EtOH-	EtOH-	EtOH	EtOH	EtOH	EtOH-	EtOH	EtOH	EtOH
	DMF	DMF		-DMF		DMF	-DMF		
$c/\text{mol } L^{-1}$	0.2	0.1	0.8	0.1	0.4	0.04	0.04	0.3	0.1
Result	gel	ppt	gel	gel	gel	gel	gel	gel	gel
Time	12 h		1 d	12h	4h	12h	12h	0.5h	12h

 $\overline{a} c$ is based on the ligand. $\overline{b} ppt = precipitate.$

Table S3. Gelation tests of $Cr(NO_3)_3 \cdot 9H_2O$ and H_3BTC (Cr:BTC = 1:1) in various solvents and concentrations at 80 °C.

Solvent	EtOH	EtOH	EtOH	EtOH	EtOH	EtOH	EtOH	EtOH	EtOH
$c/\text{mol } L^{-1}$	0.8	0.6	0.4	0.2	0.1	0.05	0.04	0.03	0.025
Result	gel	gel	gel	gel	weak gel	weak gel	weak gel	sticky solution	sticky solution
Time	4 h	4 h	3 h	4 h	overnight	1 d	2 d	4 d	4 d

Solvent	DMF	DMF-MeCN-H ₂ O	DMF-MeCN-MeOH
$c/\text{mol } L^{-1}$	0.08	0.08	0.08
Result	gel	gel	gel
Time	2 d	3 h	6 h

a c is based on the ligand.

Table S4. Gelation tests of $Cr(NO_3)_3 \cdot 9H_2O$ and BDC (Cr:BDC = 0.67:1) in different solvents at 80 °C.

Solvent	EtOH	EtOH	EtOH	EtOH	DMF	EtOH-DMF
	-DMF (3:2)	-DMF (6:5)	-DMF (1:2)	-DMF (2:5)		(1:2)
$c/\text{mol } L^{-1}$	0.06	0.11	0.1	0.17	0.3	0.2
Result	gel	gel	gel	gel	gel	gel
Time	6 h	1.5 d	overnight	overnight	2 d	overnight
2						

a c is based on the ligand.

Table S5. Gelation tests of $Cr(NO_3)_3 \cdot 9H_2O$ and H_3BTC (Cr:BTC = 1.5:1) in different solvents and concentrations at 80 °C.

Solvent	EtOH	EtOH	EtOH	EtOH	EtOH	EtOH
$c/\text{mol } L^{-1}$	0.08	0.1	0.2	0.4	0.6	0.8
Result	gel	gel	gel	gel	gel	gel
Time	1 h	overnight	4 h	3 h	4 h	4 h
Solvent	DMF	DMF-H ₂ O	DMF-I	EtOH		
$c/\text{mol } L^{-1}$	0.08	0.08	0.0	8		
Result	gel	gel	ge	I		
Time	2 d	overnight	overn	ight		

a c is based on the ligand.

Fe source	Fe ³⁺ /mmol	L	L/mmo	l Fe:L	Solvent	Result	Time
FeCl ₃ ·6H ₂ O	0.30	H ₃ BTC	0.20	3:2	EtOH	gel	1 d
FeCl ₃ ·6H ₂ O	1.0	H ₃ BTC	0.20	5:1	EtOH	gel	1 min
FeCl ₃	1.0	H ₃ BTC	0.20	5:1	EtOH	solution	
FeCl ₃ ·6H ₂ O	0.25	H ₃ BTC	0.05	5:1	EtOH	gel	5 h

Table S6. Gelation tests of different Fe sources at RT.

Table S7. Gelation tests of $CrCl_3 \cdot 6H_2O$ and H_3BTC (Cr:BTC = 1:1) in various solvents at 80 °C.

$c/mol L^{-1}$ 0.0670.0670.0670.10.1ResultsolutiongelgelgelgelTime6 d6 hovernight2 d	Solvent	EtOH	MeOH	DMF	DMF-H ₂ O	DMF-MeOH	DMF-EtOH
ResultsolutiongelgelgelTime6 d6 hovernight2 d	$c/mol L^{-1}$	0.067	0.067	0.067	0.1	0.1	0.1
Time 6d 6h overnight 2d	Result	solution	solution	gel	gel	gel	gel
Time ou on overlight 2 u	Time			6 d	6 h	overnight	2 d

^a c is based on the ligand.

Table S8. Gelation tests of $CrCl_3 \cdot 6H_2O$ and H_3BTC (Cr:BTC = 1.5:1) in various solvents at 80 °C.

Solvent	EtOH	DMF	DMF-H ₂ O	DMF-EtOH
$c/\text{mol } L^{-1}$	0.08	0.067	0.08	0.08
Result	solution	gel	gel	gel
Time		5 d	overnight	2 d
a				

a c is based on the ligand.

Table S9. Gelation tests of Fe(NO₃)₃·9H₂O and H₃BTC at RT at various Fe:L ratios.

Fe ³⁺ /mmol ^a	H ₃ BTC/mmol ^a	Fe:L	Result	Time
0.30	0.10	3:1	gel	1 min
0.25	0.10	2.5:1	gel	1 min
0.15	0.10	1.5:1	gel	1 min
0.10	0.066	1.5:1	gel	1 min
0.10	0.10	1:1	gel	5 min
0.066	0.066	1:1	gel	overnight
0.066	0.10	0.67:1	gel	2 d
0.05	0.10	0.5:1	gel	4 d

^{*a*} Dissolved in 1 mL of EtOH.

Figure S1. Photographic images of a,b) the wet gel, and b) the aerogel of CrBTC-1:1-0.2.

Figure S2. Powder X-ray diffraction patterns of the aerogels a) CrBTC-3:2-0.6, b) CrBTC-1:1-0.6, c) CrBDC-2:3-0.2.

Figure S3. XPS Cr 2p spectrum and the deconvoluted spectrum for the aerogel CrBTC-1:1-0.4.

Figure S4. XPS Cr 2p spectrum and the deconvoluted spectrum for the aerogel CrBDC-2:3-0.2.

Figure S5. XPS Fe 2p spectrum and the deconvoluted spectrum for the aerogel FeBDC-1:1-0.1.

Figure S6. XPS Fe 2p spectrum and the deconvoluted spectrum for the aerogel FeBuDC-1:1-0.1.

Figure S7. IR spectrum of the aerogels (a) CrBTC-1:1-0.6 and (b) FeBDC-1:1-0.1 (nujol).

Figure S8. Pictures of the dye removal with 0.190 g of aerogel CrBTC-1:1-0.6 in 50 mL of dye solution (0.3 mmol L^{-1}), a) solution of methyl orange in water, b) solution of dimethyl phthalate with the aerogel deposited at the bottom of the beaker after 1 d.

Figure S9. Pictures of the dye removal with 0.190 g of aerogel CrBTC-1:1-0.6 in 50 mL of dye solution (0.3 mmol L^{-1}), c) solution of dimethyl phthalate in water, d) solution of dimethyl phthalate with the aerogel deposited at the bottom of the beaker, e) picture of the dimethyl phthalate system after 1 d.

Figure S10. Pictures of the dye removal with 0.190 g of aerogel CrBTC-1:1-0.6 in 50 mL of dye solution (0.3 mmol L^{-1}), f) solution of methylene blue with the aerogel deposited at the bottom of the beaker, g) picture of the dimethyl phthalate system after 1 d.