Supporting Information

Section S1. Experimental and simulated powder X-Ray diffraction patterns.
Section S2. Table Selected bond lengths [Å] and angles [°] for the compounds RPF-16.
Section S3. Table intramolecular hydrogen bonds for the compounds RPF-16.
Section S4. X-ray powder patterns for all compounds after TG analysis.
Section S5. X-ray powder patterns for the compounds 1-4 after catalytic studies.

Section S1. Experimental and simulated powder X-Ray diffraction patterns.

Powder X-ray diffraction (PXRD) measurements were performed with a Bruker D8 diffractometer in the θ - θ mode using nickel-filtered Cu Ka1 (λ =0.15406 nm) radiation. All samples were ground to ensure a sufficient dispersion in the bulk, and then mounted onto a glass slide fixed on a sample holder by dropping powders and then leveling the sample surface. The best counting statistics were achieved by using a scanning steps of 0.02° that were taken between 5 and 30° Bragg angles with an exposure time of 0.5 s per step. Comparison was made of the experimental PXRD patterns for synthesized compounds [Ln₂(C₂H₄C₂O₄)₂(SO₄)(H₂O)₂] [Ln= La (1), Pr (2), Nd(3) and Sm(4)] with the simulated patterns from single crystals X-Ray data.

	1		2		3		4
La1-O2	2.563(5)	Pr1-O2	2.537(6)	Nd1-O2	2.538(14)	Sm1-O2	2.520(7)
La1-O3	2.515(5)	Pr1-O3	2.459(6)	Nd1-O3	2.440(15)	Sm1-O3	2.417(7)
La1-O4	2.471(5)	Pr1-O4	2.648(6)	Nd1-O4	2.621(14)	Sm1-O4	2.621(7)
La1-O5	2.636(5)	Pr1-O5	2.589(6)	Nd1-O5	2.577(15)	Sm1-O5	2.544(7)
La1-O6	2.604(5)	Pr1-O6	2.562(6)	Nd1-06	2.541(15)	Sm1-O6	2.521(7)
La1-O12	2.484(5)	Pr1-O12	2.452(6)	Nd1-O12	2.437(14)	Sm1-O12	2.415(7)
La1-O13	2.555(5)	Pr1-O13	2.498(6)	Nd1-O13	2.491(16)	Sm1-O13	2.453(8)
La1-O14	2.558(5)	Pr1-O14	2.521(6)	Nd1-O14	2.502(15)	Sm1-O14	2.482(7)
La2-O1	2.562(5)	Pr2-O1	2.512(6)	Nd2-O1	2.502(15)	Sm2-O1	2.464(7)
La2-O2	2.652(5)	Pr2-O2	2.609(6)	Nd2-O2	2.592(15)	Sm2-O2	2.564(7)
La2-O6	2.520(5)	Pr2-O6	2.490(6)	Nd2-O6	2.479(16)	Sm2-O6	2.460(7)
La2-O7	2.560(5)	Pr2-O7	2.508(6)	Nd2-07	2.495(16)	Sm2-O7	2.467(7)
La2-O8	2.495(5)	Pr2-O8	2.462(6)	Nd2-08	2.445(14)	Sm2-O8	2.427(7)
La2-O9	2.484(5)	Pr2-O9	2.446(6)	Nd2-09	2.421(16)	Sm2-O9	2.406(7)
La2-O10	2.524(5)	Pr2-O10	2.476(7)	Nd2-O10	2.462(16)	Sm2-O10	2.426(7)
La2-O11	2.597(5)	Pr2-O11	2.555(6)	Nd2-O11	2.545(15)	Sm2-O11	2.523(7)
La1-La1	4.1800(7)	Pr1-Pr1	4.1360(7)	Nd1-Nd1	4.1236(15)	Sm1-Sm1	4.0995(7)
La2-La2	4.1340(7)	Pr2-Pr2	4.0872(6)	Nd2-Nd2	4.0723(15)	Sm2-Sm2	4.0463(7)
S1-O9	1.472(5)		1.474(6)		1.495(16)		1.478(7)
S1-O11	1.480(5)		1.488(6)		1.493(15)		1.490(7)
S1-O12	1.474(5)		1.468(6)		1.475(15)		1.472(7)
S1-O14	1.474(5)		1.482(6)		1.489(15)		1.487(7)
La1-O2-La2	114.33(18)	Pr1-O2-Pr2	2 114.7(2)	Nd1-O2-Nd2	114.9(6)	Sm1-O2-Sm2	115.4(3)
La2-O6-La1	117.54(18)	Pr2-O6-Pr1	118.1(2)	Nd2-O6-Nd1	119.0(6)	Sm2-O6-Sm1	119.3(3)
La1-O4-La1	108.19(17)	Pr1-O4-Pr1	109.2(2)	Nd1-O4-Nd1	109.8(5)	Sm1-O4-Sm1	110.0(2)
La2-O8-La2	108.25(17)	Pr2-O8-Pr2	2 109.2(2)	Nd2-08-Nd2	109.7(5)	Sm-O8-Sm2	110.2(2)
09-S1-O11	109.8(3)		109.5(4)		110.1(9)		109.7(4)
09-S1-O14	108.3(3)		108.3(4)		108.0(9)		108.5(4)
012-S1-O11	109.0(3)		108.9(4)		109.4(9)		109.4(4)
012-S1-O14	1110.6(3)		110.9(4)		110.8(9)		110.9(4)

Section S2. Table Selected bond lengths [Å] and angles [°] for the compounds RPF-16

Compound	D-H··· A	<i>d</i> (D-H)	$d(\mathbf{D}\cdots\mathbf{A})$	<i>d</i> (H ···A)	<i>d</i> (D-H···A)
		[Å]	[Å]	[Å]	[°]
	013 -Н13А…05	0.793(6)	2.673(8)	1.967(6)	148.09(45)
	013 -Н13В…011	1.007(6)	2.877(8)	1.958(6)	150.34(34)
1	О10 -Н10В…О14	1.064(5)	2.913(9)	2.233(6)	119.91(33)
	О10 -Н10А…О1	1.019(6)	2.663(9)	1.656(6)	168.91(39)
	013 -Н13А…05	0.995(8)	2.691(11)	1.777(8)	150.80(52)
	О13 -Н13В…О11	0.998(8)	2.859(11)	1.895(8)	161.34(47)
2	О10 -Н10В…О14	0.997(8)	2.907(12)	1.927(8)	167.05(49)
	О10 -Н10А…О1	0.995(9)	2.653(12)	1.670(8)	168.57(54)
	013 -Н13А…05	1.003(20)	2.680(26)	2.082(17)	116.18(1.12)
	О13 -Н13В…О11	0.998(19)	2.867(25)	1.898(17)	163.10(1.08)
3	О10 -Н10В…О14	1.027(17)	2.891(25)	1.987(17)	145.35(1.03)
	О10 -Н10А…О1	0.999(20)	2.653(26)	1.685(18)	161.85(1.19)
	013 -Н13А…05	0.676(149)	2.694(12)	2.104(132)	146.60(14.76)
	О13 -Н13В…О11	0.878(161)	2.848(13)	1.977(166)	171.80(13.78)
4	О10 -Н10В…О14	0.808(17)	2.900(12)	2.098(121)	172.11(10.40)
	О10 -Н10А…О1	0.907(180)	2.655(12)	1.763(172)	167.29(16.08)

Section S3. Table intramolecular hydrogen bonds for the compounds RPF-16.

Section S4. X-ray powder patters for all compounds after TG analysis.

Comparison was made of the experimental PXRD patterns for the residue of the compounds $[Ln_2(C_2H_4C_2O_4)_2(SO_4)(H_2O)_2]$ [Ln= La (1), Pr (2), Nd(3) and Sm(4)] after TG analysis the pattern of the compound $[(LaO)_2(SO_4)]$ from the ICSD.

Section S5. X-ray powder patters for the compounds 1-4 after catalysis studies

Comparison between experimental PXRD patterns of the compounds $[Ln_2(C_2H_4C_2O_4)_2(SO_4)(H_2O)_2]$ [Ln= La (1), Pr (2), Nd(3) and Sm(4)] after the catalysis with the pattern of the compound **1** before catalysis.

