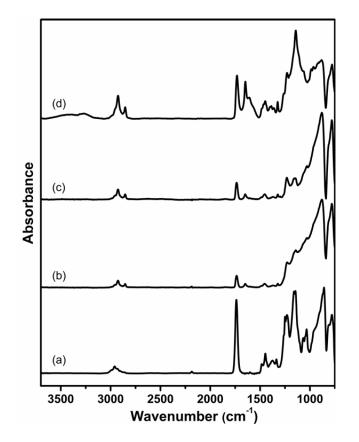

Synthesis of Multifunctional Polymer Brush Surfaces via Sequential and Orthogonal Thiol-Click Reactions


Santosh B. Rahane,^a Ryan M. Hensarling, ^a Bradley J. Sparks, ^a Christopher M. Stafford^b and Derek L. Patton^a*

^aSchool of Polymers and High Performance Materials, University of Southern Mississippi, Hattiesburg, Mississippi, 39406.

^bPolymers Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899

Figure S1. High resolution Ag3d XPS spectra of p(NCOMA-stat-PgMA-TMS) after clicking NCOMA with benzyl mercaptan and TMS deprotection with AgOTf (solid line) and after thiol-yne click with dodecanethiol. The presence of silver supports the formation of a silver acetylide complex within the brush, but also shows that residual silver remains even after thiol-yne click.

Figure S2. ATR-FTIR spectrum for p(BrMA-stat-PgMA) a) synthesized by SIP of 1:1 v/v BrMA:PgMA; b) after thiol-bromo click with dodecanethiol; c) after deprotection using AgOTf; and d) after thiol-yne click with N-acetyl cysteine.