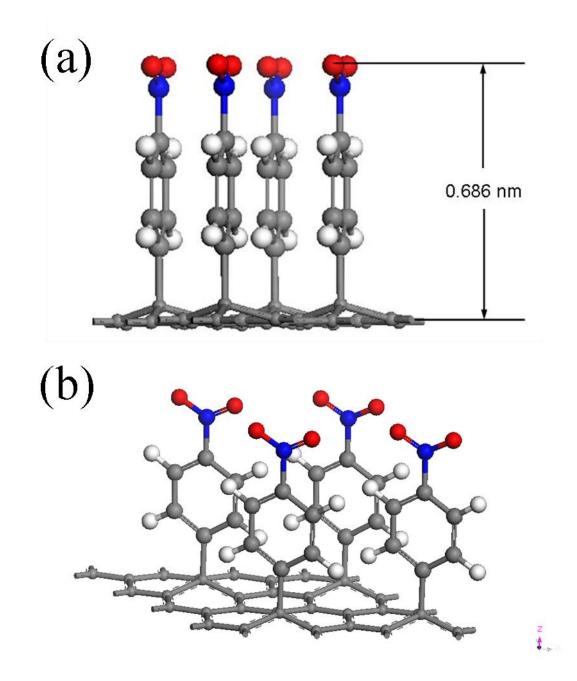
Supporting Information

Microstructure Evolution of Diazonium Functionalized Graphene: A Potential Approach to Tune Graphene Electronic Structure

Huarui Zhu, [§] Ping Huang, [§]Long Jing, Taisen Zuo, Yuliang Zhao, and Xueyun Gao*


CAS Key Laboratory for Biomedical Effect of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China

E-mail: gaoxy@ihep.ac.cn

[§] These authors contributed equally

Figure S1. AFM height images of (a) pristine and (b) modified monolayer graphene.



Figure S2. Side view of an atomic model for nitrophenyl group functionalized graphene .The grey balls represent C atoms, while the blue, red, and white ones present N atoms, O atoms, H atoms respectively.

Table S1. The <u>base plane</u> crystal lattice constant of <u>functionalized</u> graphene atdifferent reaction times and different concentrations of 4-NPD

-+	Sample 0	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
treaction		5h	10 h	10 h	25 h	<u>25h</u>
¢ _{4-NPD}		10 mM	15 mM	20 mM	35 mM	<u>20 mM</u>
ď	2.46 Å	2.50 Å	2.54 Å	2.58 Å	2.42 Å	<u>2.44 Å</u>

 $t_{reaction}$: the reaction time; c_{4-NPD} : the concentration of 4-NPD; *d*: the <u>base plane</u> crystal lattice constant of functionalized graphene.

Scheme S1. Reaction between Graphene and 4-nitrophenyl diazonium, the nitrophenyl groups were bonded with nearly perpendicular configuration.