Supporting information for

Substitution Effect on Molecular Packing and Transistor Performance of Indolo[3,2-*b*]carbazole Derivatives

By Guangyao Zhao, Huanli Dong, Huaping Zhao, Lang Jiang, Xiaotao Zhang, Jiahui Tan, Qing Meng and Wenping Hu

Scheme S1. Synthetic route of CICZ and CHICZ compounds

Materials Synthesis:

2,8-dichloro-indolo[3,2-*b***]carbazole (CICZ):** The solution of (4-chlorophenyl) hydrazine hydrochloride (15.75 g, 88 mmol) in AcOH (100 ml) was dropped into a solution of cyclohexane-1, 4-dione (4.48 g, 40 mmol) in AcOH (80ml). The resulting mixture solution was heated to 40° C and kept for 1.5 h before cooling to room temperature. The final solution was filtered and the filter residue was washed by cold ethanol, and (4-chlorophenyl) hydrazine hydrochloride (12 mmol) was added into the mixture solution of AcOH (32 ml) and H₂SO₄ (8 ml). The resulting solution was firstly heated to 60° C quickly and then heated to reflux slowly. When the color of the mixture solution was turned from brown to yellow after 5 min, the solution was cooled to

room temperature. Solvents was removed under vacuum and afforded a yellow solid, which was further recrystallized from the ethanol/DMF () mixture solvents and gave CICZ as light-yellow crystalline solid (yield: 20%). ¹H-NMR (400 MHz, DMSO-d6): δ [ppm] 11.26 (s, 2H), 8.33 (d, J = 2.0 Hz, 2H), 8.21 (s, 2H), 7.47-7.45 (m, 2H), 7.39 (d, J = 2.1 Hz, 1H), 7.37 (d, J = 2.1 Hz, 1H). MS (EI): 324 (calcd. 324.02 for C18H10Cl2N2).

2,8-dichloro-5,11,-dihexyl-indolo[3,2-*b***]carbazole (CHICZ): NaH (198 mg, 8.25 mmol) was added to a solution of CICZ (1.079 g, 3.3 mmol) in dry DMF (25 ml) under the argon protection and kept the reaction for 3h. Then 1-bromohexane (1.4 ml, 10 mmol) was added into the reacted solution and the resulting solution was stirred for 12 h at room temperature. The final solution was poured into water and extracted by CH₂Cl₂, then the organic layer was further purified by column chromatography (SiO₂, Petroleum:CH₂Cl₂=4:1) to give CHICZ as yellow solid (yield: 90%). ¹H-NMR (400 MHz, CDCl₃): \delta [ppm] 8.15 (s, 2H), 7.94 (s, 2H), 7.42 (d,** *J* **= 0.86 Hz, 2H), 7.32 (d,** *J* **= 0.86 Hz, 2H), 4.34-4.38 (t,** *J* **= 0.72Hz, 4H), 1.88-1.94 (m, 4H), 1.27-1.43 (m, 12H), 0.85-0.89 (m, 6H). MS (EI): 492 (calcd. 492 for C₃₀H₃₄Cl₂N₂).**

Fig. S1 Typical output and transfer curves of top-contact field-effect transistors based on vacuum-evaporated CHICZ thin films on OTS-modified Si/SiO₂ substrates at different temperatures : (a,b) 40 $^{\circ}$ C, (c,d) 60 $^{\circ}$ C.

Fig. S2 Optical microscopy images of CHICZ single crystals grown from different experimental conditions.