A New Supramolecular POSS Electroluminescent Material

Yu-Lin Chu, Chih-Chia Cheng,* Ya-Ping Chen, Ying-Chieh Yen, Feng-Chih Chang*

Figure S1. ¹H NMR spectroscopic titration. Amide region of the ¹H NMR spectrum of U-PY after the addition of ODAP-POSS.

Figure S2. Benesi-Hildebrand plots of U-PY/ODAP-POSS association in tetrachloroethane.

Figure S3. DSC thermograms (a) and TGA thermal degradation patterns (b) for U-PY/ODAP-POSS composites in various weight ratios.

Blend				
U-PY/ODAP-POSS	T _{d5%} (°C)	T _{d40%} (°C)	Char yield (%)	T _g (°C)
100/0	297	363	6	43
90/10	276	369	14	38
80/20	282	374	17	39
70/30	281	385	22	40
60/40	284	394	27	48
50/50	291	411	32	56
0/100	286	463	41	71

Table S1. Thermal properties of U-PY/ODAP-POSS composites

Wavelength (nm)

Figure S4. Thermal quenching of U-PY/ODAP-POSS composites in films after annealed at 150°C.

Figure S5. Electroluminescence based on the devices ITO/PEDOT:PSS/(U-PY/ODAP-POSS)/TPBI/LiF/A1.

Figure S6. Voltage-Current density and Voltage-Luminescence characteristic of MEH-PPV/(U-PY/ODAP-POSS 90/10) based device.

Figure S7. EL spectra of MEH-PPV/U-PY/ODAP-POSS (90/10) based device.

Figure S8. MALDI-TOF mass spectrum of ODAP-POSS.

Figure S9. ¹H NMR spectra of 1-((4-bromobutoxy)methyl)pyrene.

Figure 10. ¹³C NMR spectra of 1-((4-bromobutoxy)methyl)pyrene.

Figure S11. ¹H NMR spectra of 4-uracilbutyl-1-methylpyrene ether (U-PY).

Figure S12. ¹³C NMR spectra of 4-uracilbutyl-1-methylpyrene ether (U-PY).

Figure S13. ¹H NMR spectra of N-(6-aminopyridin-2-yl)hex-5-enamide.

Figure S14. ¹³C NMR spectra of N-(6-aminopyridin-2-yl)hex-5-enamide.

Figure S15. ¹H NMR spectra of Octakis[dimethyl(N-(6-aminopyridin-2-yl))siloxy]silsesquioxane.

Figure S16. ¹³C NMR spectra of Octakis[dimethyl(N-(6-aminopyridin-2-yl))siloxy]silsesquioxane.

Figure S17. ¹H NMR spectra of Octakis[dimethyl(N-(6-acetamidopyridin-2 yl))siloxy] silsesquioxane (ODAP-POSS).

Figure S18. ¹³C NMR spectra of Octakis[dimethyl(N-(6-acetamidopyridin-2 yl))siloxy] silsesquioxane (ODAP-POSS).