Electronic Supplementary Information (ESI) for Journal of Materials Chemistry The Royal Society of Chemistry, 2012

Electronic Supplementary Information

Halogen-free Chelated Orthoborate Ionic Liquids

and Organic Ionic Plastic Crystals

Faiz Ullah Shah¹, Sergei Glavatskih², Pamela M. Dean³, Douglas R. MacFarlane³,

Maria Forsyth^{4, 5} and Oleg N. Antzutkin^{1, 6, *}

¹Chemistry of Interfaces, Luleå University of Technology, S-97187, Luleå, Sweden

²System and Component Design, KTH Royal Institute of Technology, 10044 Stockholm, Sweden

³School of Chemistry, Monash University, Clayton, Victoria 3800, Australia

⁴Department of Materials Engineering, Monash University, Clayton, Victoria 3800, Australia

⁵Institute for Technology Research and Innovation and Centre for Material and Fibre Innovation,

Deakin University, Geelong, Victoria 3217, Australia

⁶Department of Physics, University of Warwick, CV4 7AL, Coventry, United Kingdom

Corresponding author: Oleg.Antzutkin@ltu.se

CONTENT:

MS (ESI) data on ILs	Figures SI-1 to SI-5
NMR (¹ H, ¹³ C and ¹¹ B) spectra of ILs in CDCl ₃	Figures SI-6 to SI-20
Crystallographic data on [Chol][BScB]	Figures SI-21 to SI-22
¹⁵ N CSA analysis of [EMIm][BScB]	Figures SI-23 to SI-24
¹³ C CP/MAS NMR of a lanthanum complex formed after the extraction process of La ³⁺ (aq) by [Chol][BScB]	Figure SI-25

Figure SI-1. ESI-MS of [EMIm][BMB].

Figure SI-2. ESI-MS of [EMIm][BScB].

Figure SI-3. ESI-MS of [EMPy][BMB].

Figure SI-4. ESI-MS of [EMPy][BScB].

Figure SI-5. ESI-MS of [Chol][BScB].

Figure SI-6. 400.17 MHz ¹H NMR spectrum of [EMIm][BMB] in CDCl₃.

Figure SI-7. 100.63 MHz ¹³C NMR spectrum of [EMIm][BMB] in CDCl₃.

Figure SI-8. 128.39 MHz ¹¹B NMR spectrum of [EMIm][BMB] in CDCl₃ (A broad background signal is from the sample tube).

Figure SI-9. 400.17 MHz ¹H NMR spectrum of [EMIm][BScB] in CDCl₃.

Figure SI-10. 100.63 MHz ¹³C NMR spectrum of [EMIm][BScB] in CDCl₃.

Figure SI-11. 128.39 MHz ¹¹B NMR spectrum of [EMIm][BScB] in CDCl₃ (A broad background signal is from the sample tube).

Figure SI-12. 400.17 MHz ¹H NMR spectrum of [EMPy][BMB] in CDCl₃.

Figure SI-13. 100.63 MHz ¹³C NMR spectrum of [EMPy][BMB] in CDCl₃.

Figure SI-14. 128.39 MHz ¹¹B NMR spectrum of [EMPy][BMB] in CDCl₃ (A broad background signal is from the sample tube).

Figure SI-15. 400.17 MHz ¹H NMR spectrum of [EMPy][BScB] in CDCl₃.

Figure SI-16. 100.63 MHz ¹³C NMR spectrum of [EMPy][BScB] in CDCl₃.

Figure SI-17. 128.39 MHz ¹¹B NMR spectrum of [EMPy][BScB] in CDCl₃ (A broad background signal is from the sample tube).

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

Figure SI-18. 400.17 MHz ¹H NMR spectrum of [Chol][BScB] in CDCl₃.

Figure SI-19. 100.63 MHz ¹³C NMR spectrum of [Chol][BScB] in CDCl₃.

Figure SI-20. 128.39 MHz ¹¹B NMR spectrum of [Chol][BScB] in CDCl₃ (A broad background signal is from the sample tube).

Figure SI-21. The asymmetric unit of [Chol][BScB] shown with 50 % thermal ellipsoids and the numbering scheme. The hydrogen atoms are omitted for clarity.

Electronic Supplementary Information (ESI) for Journal of Materials Chemistry The Royal Society of Chemistry, 2012

Figure SI-22. Packing diagram of [Chol][BScB] as viewed down the *a-axis* with hydrogen bonding shown in red dashed lines. The channels are clearly seen. The disordered component of the cholinium cation is shown as isolated atoms.

Electronic Supplementary Information (ESI) for Journal of Materials Chemistry The Royal Society of Chemistry, 2012

Figure SI-23. χ^2 Statistics as a function of the ¹⁵N CSA parameters, δ_{aniso} and η . The plot exhibits simulations for N-sites of [EMIm][BScB] with isotropic chemical shift 142.8 ppm. The 68.3% joint confidence limit (solid line) and 95.4% joint confidence limit (dashed line) for the two CSA parameters are shown.

Figure SI-24. χ^2 Statistics as a function of the ¹⁵N CSA parameters, δ_{aniso} and η . The plot exhibits simulations for N-sites of [EMIm][BScB] with isotropic chemical shift 131.3 ppm. The 68.3% joint confidence limit (solid line) and 95.4% joint confidence limit (dashed line) for the two CSA parameters are shown.

Electronic Supplementary Information (ESI) for Journal of Materials Chemistry The Royal Society of Chemistry, 2012

Figure SI-25. ¹³C CP/MAS NMR spectrum of a powder lanthanum complex with bis(salicylato)borate after the extraction process of La³⁺(aq) by [Chol][BScB]. Resonance lines between 120 and 140 ppm are assigned to aromatic carbon sites in the salicylic groups of the complex. Resonance lines at 230-250 ppm are spinning sidebands.