A novel aided-cation strategy to advance the dehydrogenation of calcium borohydride monoammoniate

Ziwei Tang,^a Yingbin Tan,^a Qinfen Gu,^b Xuebin Yu^a*

^a Department of Materials Science, Fudan University, Shanghai 200433, China

^b Australian Synchrotron, 800 Blackburn Rd, Clayton 3168, Australia

E-mail: <u>yuxuebin@fudan.edu.cn</u>

Figure S1. TPD results for ammonia complexes of LiBH₄ and Ca(BH₄)₂, and their composites of Ca(BH₄)₂·NH₃/LiBH₄, Ca(BH₄)₂/2LiBH₄·NH₃, Ca(BH₄)₂·2NH₃/LiBH₄, Ca(BH₄)₂·NH₃/LiBH₄·NH₃ with a heating rate of 5 °C min⁻¹ in argon.

Supplementary Material (ESI) This journal is (c) The Royal Society of Chemistry 2011

Figure S2. High-resolution X-ray diffraction patterns for $Ca(BH_4)_2 \cdot NH_3/LiBH_4$ and $Ca(BH_4)_2/LiBH_4 \cdot NH_3$ composites.

Figure S3. XRD pattern for the Ca(BH₄)₂·NH₃/LiBH₄ composite heated to 300 $^{\circ}$ C in argon.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is O The Royal Society of Chemistry 2012

Supplementary Material (ESI) This journal is (c) The Royal Society of Chemistry 2011

Figure S4. DSC result for the Ca(BH₄)₂·NH₃/LiBH₄ composite with a heating rate of 5 °C min⁻¹.

Supplementary Material (ESI) This journal is (c) The Royal Society of Chemistry 2011

Figure S5. TPD result and its differential curve (DTPD) for the $Ca(BH_4)_2 \cdot NH_3/LiBH_4$ composite with a heating rate of 5 °C min⁻¹ in argon, which gives a total hydrogen release of 6.5 equiv..

Figure S6. TPD results for the Ca(BH₄)₂·NH₃/LiBH₄ composite with a heating rate of 5 °C min⁻¹at 0, 2 and 4 bar hydrogen pressure, respectively.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2012

Supplementary Material (ESI) This journal is (c) The Royal Society of Chemistry 2011

Table S1 Experimental and calculated structural parameters of Ca(BH₄)₂·NH₃ (Space group *Pna*2₁, experimental unit cell *a* = 8.199959(50) Å, *b* = 11.846032(70) Å, *c* = 5.836681(30) Å, *V* = 566.9441 Å³, calculation unit cell *a* = 8.4270 Å, *b* = 12.0103 Å, *c* = 5.6922 Å, *V* = 576.1121 Å³).

Atom	Wyckoff Site	Х		У		Z	
		Cal.	Exp.	Cal.	Exp.	Cal.	Exp.
Ca	4a	0.17213	0.16174	0.40028	0.40985	0.51900	0.51818
B1	4a	0.03703	0.05484	0.78745	0.78088	0.03079	0.00001
H1a	4a	0.07520	0.09283	0.84912	0.86569	0.19280	0.07081
H1b	4a	0.10327	0.08189	0.81332	0.78079	-0.15380	-0.18982
H1c	4a	0.07598	0.12440	0.69195	0.71376	0.08254	0.09684
H1d	4a	-0.10672	-0.08028	0.79666	0.76793	0.00258	0.02747
B2	4a	0.12699	0.14195	0.41511	0.43146	0.02552	0.03176
H2a	4a	0.22332	0.26062	0.47334	0.45512	0.12952	0.11765
H2b	4a	0.04894	0.08251	0.47521	0.51184	-0.10653	-0.03064
H2c	4a	0.19840	0.17126	0.34443	0.37061	-0.08696	-0.11155
H2d	4a	0.03628	0.05882	0.36597	0.38851	0.15738	0.15921
N3	4a	0.69750	0.69010	0.41656	0.40952	0.04765	0.05626
НЗа	4a	0.78254	0.76966	0.35648	0.34884	0.01619	0.02300
H3b	4a	0.64893	0.68409	0.39646	0.42181	0.20886	0.22382
H3c	4a	0.60920	0.58134	0.40208	0.38731	-0.07454	-0.00198

Table S2 Summary of H2 evolution from ammonia complexes of LiBH4 and $Ca(BH4)_2$, and their composites of $Ca(BH4)_2 \cdot NH_3/LiBH_4$, $Ca(BH4)_2/LiBH_4 \cdot NH_3$, $Ca(BH4)_2/2LiBH_4 \cdot NH_3$, $Ca(BH4)_2 \cdot 2NH_3/LiBH_4$, $Ca(BH4)_2 \cdot NH_3/LiBH_4 \cdot NH_3$.

Samples ^a	H ₂ ^b capacity wt. %	${ m H_2}^{b}$ mol %	$\frac{\text{Mole H}_2{}^b}{\text{Mole samples}}$
Ca(BH ₄) ₂ ·NH ₃ +LiBH ₄	12.1	99.8	6.6
Ca(BH ₄) ₂ +LiBH ₄ ·NH ₃	11.1	97.0	6.0
Ca(BH ₄) ₂ +2LiBH ₄ ·NH ₃	8.0	90.1	5.9
Ca(BH ₄) ₂ ·2NH ₃ +LiBH ₄	7.7	86.5	4.9
$Ca(BH_4)_2 \cdot NH_3 + LiBH_4 \cdot NH_3$	7.0	82.0	4.4
$Ca(BH_4)_2 \cdot NH_3$	4.7	61.1	2.0
$LiBH_4 \cdot NH_3$	3.6	49.4	0.7
$Ca(BH_4)_2 \cdot 2NH_3$	3.0	44.1	1.6

^{*a*} The samples were heated in 1 bar argon from 50 to 350 °C with a heating rate of 5 °C \cdot min⁻¹ for calculations of H₂ evolution.

^b H₂ content in the released gas.