Supplementary Material (ESI) for Journal of Material Chemistry

Cyclotricatechylene based porous crystalline material: synthesis and applications in gas storage

Jin-Tao Yu,^a Zhe Chen,^a Junliang Sun,^{*b} Zhi-Tang Huang^a and Qi-Yu Zheng^{*a}

 ^a Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
 ^b Structural Chemistry and Berzelii Centre EXSELENT on Porous Materials, Stockholm University, SE-106 91 Stockholm, Sweden.

1. ¹H NMR spectrum of compound BE

Fig. S1¹H NMR spectrum of compound BE

2. FT-IR spectral profiles

Fig. S2 FT-IR spectra of CTC (black), BDBA (red) and CTC-COF (blue).

Fig. S3 FT-IR spectra of CTC-COF (blue) and BE (red)

Table S1: Peak assignment for FT-IR spectrum of CTC-COF. Notes are provided to correlate the spectra and compare with that of model compound BE.

Peak (cm ⁻¹)	Assignment and Notes
3340.8 (m)	O-H stretch from the end B(OH) ₂ or OH groups
3065.6 (w)	Aromatic C-H stretch
2986.5 (w)	C-H stretching from aromatic phenyl groups
2920.1 (w)	
2863.5 (w)	
1616.5(w)	C=C stretch for aromatics
1521.0 (m)	Phenyl ring C=C vibrational mode
1480.8 (m)	C=C vibrational modes for CTC units
1369.3 (s)	B-O stretch, characteristic band for boroxoles, in BE it is 1372.7
1332.6 (s)	B-O stretch, in BE is 1337.8
1248.7 (s)	C-O characteristic stretch for boroxoles, in be it is 1247.9
1161.5 (m);	C-H in plane bending modes

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is O The Royal Society of Chemistry 2012

Supplementary Material (ESI) for Journal of Material Chemistry
This journal is © The Royal Society of Chemistry 2012

1078.6 (m)	
1019.2 (m)	B-C stretch, in BE is 1025.1
861.3 (m)	C-H out of plane bands for <i>p</i> -substituted aromatic
833.1 (m)	
807.7 (w)	C-H out of plane bending modes
744.8 (m)	
659.7 (m)	
610.8 (w)	

3. Spectra of ¹¹B MAS NMR and ¹³C CP-MAS NMR

Fig. S4¹¹B MAS NMR spectra of BE, CTC-COF and BDBA.

Supplementary Material (ESI) for Journal of Material Chemistry This journal is © The Royal Society of Chemistry 2012

Fig. S5 ¹³C CP-MAS NMR spectrum of CTC-COF.

4. Thermal gravimetric analysis (TGA)

Powder-like sample of **CTC-COF** was heated at a constant rate of 10 °C /min under nitrogen from 25 °C to 900 °C. As shown in **Fig. S6**, guest molecules are steadily lost upon heating, the framework is stable up to 520 °C.

Fig. S6 TGA measurement of CTC-COF.

5. BET plot of the nitrogen adsorption measurement

Fig. S7: BET plot of CTC-COF.

6. Simulation and calculation of crystal packing

 Table S2: Refined crystal data

Formula	$C_{60}H_{36}B_6O_{12}$	
Formula weight	1013.78	
Crystal system	Trigonal	
Space group	<i>P</i> -3 <i>m</i> 1	
Unit cell dimensions	<i>a</i> = <i>b</i> = 25.0645 Å	
	<i>c</i> = 4.2989 Å	
Cell volume	2338.87 Å ³	

Table	S3 :	Fractional	atomic	coordinates
I abit	50.	1 Iuctionui	atomic	coordinates

Atom	X	у	Z
C1	0.55638	0.38826	1.20405
C2	0.54748	0.34038	-3.98469
C3	0.59625	0.34775	1.82702
C4	0.46388	0.44021	1.89250
C5	0.58635	0.29317	0.63838
C6	0.52400	0.47600	0.78145
B1	0.54943	0.45057	0.53624
01	0.51685	0.39176	1.40862
H1	0.50315	0.29735	-3.98872
H2	0.53847	0.26923	0.55038
Н3	0.61512	0.30756	0.42729
H4	0.43562	0.39304	1.80528

Simulation of crystal packing

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is O The Royal Society of Chemistry 2012

Supplementary Material (ESI) for Journal of Material Chemistry This journal is © The Royal Society of Chemistry 2012

Fig. S8: Simulation of crystal lattice of the unit cell calculated in an eclipsed arrangement: a) Top view in AB plane, b) crystal structure of four unit cells in AB plane, c) side view of the eclipsed crystal lattice packing of **CTC-COF**.

