Supplementary Information

Plastic Crystal Phases with High Proton Conductivity

Usman Ali Rana*^a, R. Vijayaraghavan^b, D. R. MacFarlane^{a,b} and Maria Forsyth*^c

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

The effect of annealing on [Choline][DHP]

The effect of addition of 4 mol% acid to [Choline][DHP]

Figures and Tables

2nd heating cycle

Figures and Tables

10

Table S1. Glass transition temperatures (T_g), heat capacity change (Δ Cp) values for the glass transitions and enthalpy change (Δ H) values as calculated from the peak area of different solid-solid phase transitions for annealed [Choline][DHP] system.

Material	$Tg \\ T \overset{\circ C}{\circ C} \pm 2 \\ \overset{\circ C}{\circ C}$	(Tg) ΔCp (J/(g K) ± 5%	$III>>II \Delta H/ kJ mol^{-1} \pm 5\%$	$\begin{array}{c} \text{II>>I} \\ \Delta \text{H/ kJ mol}^{-1} \\ \pm 5\% \end{array}$
Annealed [Choline][DHP] 2nd heating cycle	-22	25	5.5	1

15

20

Figure S2. DSC thermograms of (a) Annealed [Choline][DHP], (b) 4mol % H3PO4 + [Choline][DHP], (c) 4 mol% HN(Tf)₂ + [Choline][DHP] and (d) 4 % TfOH +[Choline][DHP] samples. All samples were annealed and the DSC traces are reported for the second heating cycle.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is ${}^{\odot}$ The Royal Society of Chemistry 2012

Table S2. ¹H NMR full width at half maximum (FWHM) linewidths, chemical shift values and % area of NMR peaks for 4 mol% H₃PO₄, 4 mol% TfOH and 4 mol% HN(Tf)₂ containing [Choline][DHP] samples at 30 and 100 °C. The NMR spectra of these samples were deconvoluted and simulated by the dmfit program

$4 \text{ mol}\% \text{ H}_3\text{PO}_4 +$	Area (%)	Chemical shift	FWHM (Hz) ±	4 mol% H3PO4 +	Area (%)	Chemical	FWHM (Hz) \pm
[Choline][DHP] @ 30 °C		(ppm)	100 Hz	[Choline][DHP] @ 100 °C		shift (ppm)	100 Hz
Broad peak	96	3.3	18000	Broad peak 1	56	3.7	12000
_				Broad peak 2	5	15.5	7000
Narrow peak [H(1) to H(5)]	3.5	3.5	1500	Broad peak 2	28	3.8	900
Narrow peak 1 [H(6) to H(8)]	0.5	9.3	1000	Narrow peak [H(1) to H(5)]	6	10	1000
Narrow peak 2 [H(6) to H(8)]	-	_	1	Narrow peak 1 [H(6) to H(8)]	5	15	1000
4 mol% TfOH +	Area (%)	Chemical shift	FWHM (Hz) ±	4 mol% TfOH +	Area (%)	Chemical	FWHM (Hz) \pm
[Choline][DHP] @ 30 °C		(ppm)	100 Hz	[Choline][DHP] @ 100 °C		shift (ppm)	100 Hz
Broad peak	83	1.3	20000	Broad peak 1	47	3.7	12000
-				Broad peak 2	6	16.7	9000
Narrow peak [H(1) to H(5)]	16	3.7	800	Narrow peak [H(1) to H(5)]	29	3.8	800
Narrow peak 1 [H(6) to H(8)]	1	8.2	800	Narrow peak 1 [H(6) to H(8)]	7	9.7	900
Narrow peak 2 [H(6) to H(8)]	-	-	-	Narrow peak 2 [H(6) to H(8)]	11	15.3	1300
· · · · · · · ·							
4 mol% HN(Tf) ₂ +	Area (%)	Chemical shift	FWHM (Hz) ±	4 mol% HN(Tf) ₂ +	Area (%)	Chemical	FWHM (Hz) ±
[Choline][DHP] @ 30 °C		(ppm)	100 Hz	[Choline][DHP] @ 100 °C		shift (ppm)	100 Hz
Broad peak	78	2.2	17000	Broad peak	53	3.3	12000
Narrow peak [H(1) to H(5)]	17	3	800	Narrow peak [H(1) to H(5)]	27	3.3	700
Narrow peak 1 [H(6) to H(8)]	5	10.3	1000	Narrow peak 1 [H(6) to H(8)]	8	10.2	700
Narrow peak 2 [H(6) to H(8)]	-	-	-	Narrow peak 2 [H(6) to H(8)]	12	15.3	1000

15

5

The effect of acid composition on structure and dynamics of [Choline][DHP]

Figures and Tables

20

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2012

¹⁰ Table S3. Glass transition temperatures (T_g), heat capacity change (Δ Cp) values for the glass transitions and enthalpy change (Δ H) values as calculated from the peak area of different solid-solid phase transitions for 8 mol% TfOH and 12 mol% TfOH containing [Choline][DHP] samples. The DSC data of the pure material is given for reference.

Material	$T^{o}_{C} \pm 2$	(Tg) ΔCp (J/(g K) ± 5%	$\begin{array}{c} \text{III} >> \text{II} \\ \Delta \text{H/ kJ mol}^{-1} \\ \pm 5\% \end{array}$	$\begin{array}{c} \text{II>>I} \\ \Delta \text{H/ kJ mol}^{-1} \\ \pm 5\% \end{array}$
Annealed [Choline][DHP] 2 nd heating cycle	-22	25	5.5	1
8 mol% TfOH + [Choline][DHP]	-46	55	6.2	0.9
12 mol% TfOH + [Choline][DHP]	-48	82	3.9	0.3

15

Figure S5. Powder X-Ray diffraction patterns of 8 mol% TfOH and 12 mol% TfOH containing [Choline][DHP] samples at 22 ± 1 °C temperature.

20

25

Figure S6. ^{1}H NMR spectra of 8 mol% TfOH, 12 mol% TfOH containing [Choline][DHP] samples at 30 and 100 $^{\circ}\text{C}\pm1^{\circ}\text{C}.$

Supplementary Information

8 mol% TfOH +	Area (%)	Chemical shift	FWHM (Hz) ±	8 mol% TfOH +	Area (%)	Chemical	FWHM (Hz) ±
[Choline][DHP] @ 30 °C		(ppm)	100 Hz	[Choline][DHP] @ 100 °C		shift (ppm)	100 Hz
Broad peak	59	0.6	19000	Broad peak 1	39	2	12500
Narrow peak [H(1) to H(5)]	37	3.2	800	Narrow peak [H(1) to H(5)]	42	3.4	600
Narrow peak 1 [H(6) to H(8)]	4	10.2	800	Narrow peak 1 [H(6) to H(8)]	9	9.4	600
Narrow peak 2 [H(6) to H(8)]	-	1	1	Narrow peak 2 [H(6) to H(8)]	10	14.7	1400
12 mol% TfOH +	Area (%)	Chemical shift	FWHM (Hz) ±	12 mol% TfOH +	Area (%)	Chemical	FWHM (Hz) \pm
[Choline][DHP] @ 30 °C		(ppm)	100 Hz	[Choline][DHP] @ 100 °C		shift (ppm)	100 Hz
Broad peak	46	6.8	7300	Broad peak 1	9	2.8	4000
Narrow peak [H(1) to H(5)]	47	3	500	Narrow peak [H(1) to H(5)]	68	3.2	300
Narrow peak 1 [H(6) to H(8)]	7	10.3	400	Narrow peak 1 [H(6) to H(8)]	17	9.5	300
Narrow peak 2 [H(6) to H(8)]	-	-	-	Narrow peak 2 [H(6) to H(8)]	6	15	800
• • • • • • • •				· · · · · · · ·			

Table S4. ¹H NMR full width at half maximum (FWHM) linewidths, chemical shift values and % area of NMR peaks for 8 mol% TfOH and 12 mol% TfOH containing [Choline][DHP] samples at 30 and 100 °C. The NMR spectra of these samples were deconvolated and simulated by the dmfit program.

Thermal Stability of the acid/[Choline][DHP] mixtures

- ¹⁰ The thermal stability of the pure and acid containing [Choline][DHP] samples was investigated using the Thermogravimetric Analysis (TGA) technique (Figure S7) and indicates high thermal stability, up to 200 °C for all samples. The isothermal TGA data (Table S5) put into sup info showed that, on
- ¹⁵ holding these samples for 10 hours at 120 °C, the total weight loss was in the range of 1.5 to 2 weight %. This weight loss is most likely due to the bound water present in the material. We have observed the presence of this bound water during the solidstate nuclear magnetic resonance (NMR) studies on

²⁰ [Choline][DHP], where the H_2O protons were found to be exchanging with the OH group protons of the [DHP] anion¹.

Table S5. Isothermal TGA data of annealed, as-prepared and acid
containing samples of [Choline][DHP].

Material	Weight loss (%) \pm 5 %
	at 120 °C isothermal temperature
Annealed and as-prepared	2
[Choline][DHP]	
4 mol% TfOH + [Choline][DHP]	2
8 mol% TfOH + [Choline][DHP]	1.8
12 mol% TfOH + [Choline][DHP]	1
4 mol% H3PO4 + [Choline][DHP]	2
4 mol% HN(Tf)2 + [Choline][DHP]	1.8

25

Table S5 also indicates a reductions in the weight loss for 8 and 12 mol% TfOH containing sample and 4 mol% HN(Tf)₂ containing sample. This weight loss data suggest less bound water in the fluorinated anion containing samples compared to ³⁰ the neat plastic crystal or H₃PO₄ acid containing sample. This observation can be explained by the fact that the Tf⁻¹ anion of TfOH and N(Tf)₂⁻¹ anion of HN(Tf)₂ are comparatively weakly basic compared to the [DHP] anion and therefore shows less affinity towards water. Another important observation from the ³⁵ isothermal TGA data is the same weight loss seen in as prepared and annealed [Choline][DHP] samples, which eliminates the possibility of the annealing process merely being a drying process.

40 Notes and references

^aDepartment of Materials Engineering and the ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, Vic, 3800 Australia, Fax: +61 (03) 95588122; Tel: +61 (03) 99054939; E-mail: <u>usmanali.rana@monash.edu</u>

⁴⁵ ^bDepartment of Chemistry and the ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, Vic, 3800 ^cInstitute of Technology and Research Innovation and the ARC Centre of Excellence for Electromaterials Science, Deakin University, VIC 3125, Australia, Telephone: + 61 (03) 924 46818; Fax: + 61 (03) 9244 6868 E-mail: <u>mforsyth@deakin.edu.au</u>

References

1. L. S. Cahill, U. A. Rana, M. Forsyth and M. E. Smith, *Physical Chemistry Chemical Physics*, 2010, **12**, 5431-5438.

5

10

15