Supplementary Information

Microliter-Scale Solution Processing for Controlled, Rapid Fabrication of Chemically Derived

Graphene Thin Films

Young Un Ko, Sung-rheb Cho, Kyoung Soon Choi, Yensil Park, Sung Tae Kim, Nam Hee Kim,

Soo Young Kim, and Suk Tai Chang*

School of Chemical Engineering and Materials Science, Chung-Ang University

221 Heukseok-dong, Dongjak-gu, Seoul 156-756, Republic of Korea

*E-mail: stchang@cau.ac.kr

Two movies visualizing the MDD coating process are provided (in AVI format):

Movie1_MDD_Coating_Glass.avi

This movie shows the meniscus-dragging deposition (MDD) of the GO thin film on a glass slide with a GO concentration of 2.4 mg mL⁻¹. The coating area of the GO film is 2.5×5.0 cm². The deposition velocity and deposition angle are 10 mm sec⁻¹ and 30°, respectively. The movie is recorded with Panasonic Lumix DMC-LX5 digital camera.

Movie2_MDD_Coating_PET_Large_Area.avi

This movie shows the meniscus-dragging deposition (MDD) of the large-area GO thin film on a PET with a GO concentration of 2.4 mg mL⁻¹. The coating area of the GO film is 25×10 cm². The deposition velocity and deposition angle are 10 mm sec⁻¹ and 30°, respectively. The movie is recorded with Panasonic Lumix DMC-LX5 digital camera.

Figure S1. Transmission spectra of reduced GO thin films on glass slides at various deposition concentrations. The reduced GO films are deposited at the DN = 20 and deposition speed of 10 mm sec⁻¹, followed by HI acid vapor reduction for 3 h at 80 °C.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is ${\ensuremath{\mathbb O}}$ The Royal Society of Chemistry 2012

Figure S2. AFM images and height profiles of the rGO thin films on a glass slide (a) at different deposition numbers with a GO concentration of 2.4 mg mL⁻¹ and (b) with various GO concentrations at DN = 20. All of the reduced GO films were deposited with a deposition velocity of 10 mm sec⁻¹ and deposition angle of $\theta = 30^{\circ}$, followed by HI acid vapor reduction for 3 h at 80 °C. The images are for $15 \times 15 \,\mu$ m regions.

Figure S3. Electrical and optical properties of the rGO thin films deposited on glass slides at DN 20. Sheet resistance and transmittance at $\lambda = 550$ nm as a function of deposition concentration, (a) 3.0 mg mL⁻¹ and (b) 4.0 mg mL⁻¹. The deposition velocity and deposition angle (θ) for the reduced GO thin film coatings are 10 mm sec⁻¹ and 30°, respectively.

Figure S4. Electrical and optical properties of the rGO thin films deposited on PET with a GO concentration of 2.4 mg mL⁻¹. Sheet resistance and transmittance at $\lambda = 550$ nm as a function of deposition number. The deposition velocity and deposition angle (θ) for the reduced GO thin film coatings are 10 mm sec⁻¹ and 30°, respectively.