Supporting Information

Super-High-Energy Materials Based on Bis(2,2-dinitroethyl)nitramine

Jinhong Song,^a Zhiming Zhou,^{*a,b} Xiao Dong,^a Haifeng Huang,^a Dan Cao,^a Lixuan Liang,^a Kai Wang,^a Jun Zhang,^a Fu-xue Chen^a and Yukai Wu^a [†]School of Chemical Engineering and the Environment and State Key Laboratory of Explosion [‡]Science and Technology, Beijing Institute of Technology, Beijing 100081, R. P. China E-mail: zzm@bit.edu.cn

Table of contents

S2 X-ray crystallography

- S2 Table S1 Band angles and dihedral angles for the structure of BDNA.
- S3-S6 Geometry coordinates
- S6 Table S2 Ab Initio computional data

S6 References

X-ray crystallography: Crystals of bis(2,2-dinitroethyl)nitramine(BDNENA) was removed from the flask and covered with a layer of hydrocarbon oil, respectively. A suitable crystal was selected, attached to a glass fiber, and placed in the low-temperature nitrogen stream. Data for bis(2,2-dinitroethyl)nitramine was collected at 113(2) K using a Rigaku Saturn724 CCD diffractometer equipped with a graphite-monochromatized Mo<u>Ka</u> radiation (λ = 0.71073 Å) using omega scans. Data collection and reduction were performed and the unit cell was initially refined by using CrystalClear -SM Expert 2.0 r2¹ software. The reflection data were also corrected for *Lp* factors. The structure was solved by direct methods and refined by least squares method on *F*² using SHELXTL-97 system of programs². Structure was solved in the space group C2/c by analysis of systematic absences. In this all-light-atom structure the value of the Flack parameter did not allow the direction of polar axis to be determined and Friedel reflections were then merged for the final refinement. Band angles and dihedral angles of the data collection and refinement are given in Table S1 and S2.

01 ⁱ —N1—01	126.1 (2)	N2—C1—C2	114.31 (14)
$O1^{i}$ —N1—N2	116.96 (12)	N2—C1—H1A	108.7
O1—N1—N2	116.96 (12)	C2—C1—H1A	108.7
N1—N2—C1	117.53 (10)	N2—C1—H1B	108.7
$N1 - N2 - C1^{i}$	117.53 (10)	C2—C1—H1B	108.7
$C1-N2-C1^{i}$	124.9 (2)	H1A—C1—H1B	107.6
O3—N3—O2	125.50 (18)	N3—C2—N4	106.95 (14)
O3—N3—C2	117.81 (16)	N3—C2—C1	106.58 (15)
O2—N3—C2	116.54 (18)	N4—C2—C1	113.86 (15)
O4—N4—O5	125.55 (16)	N3—C2—H2	109.8
O4—N4—C2	116.64 (16)	N4—C2—H2	109.8
O5—N4—C2	117.69 (15)	C1—C2—H2	109.8
$O1^{i}$ —N1—N2—C1	-171.64 (10)	O3—N3—C2—C1	75.19 (18)
01—N1—N2—C1	8.36 (10)	O2—N3—C2—C1	-100.55 (18)
$O1^{i}$ —N1—N2—C 1^{i}	8.36 (10)	O4—N4—C2—N3	-44.21 (19)
01 — $N1$ — $N2$ — $C1^{i}$	-171.64 (10)	O5—N4—C2—N3	139.51 (16)
N1—N2—C1—C2	-72.79 (14)	O4—N4—C2—C1	-161.66 (15)
$C1^{i}$ —N2—C1—C2	107.21 (14)	O5—N4—C2—C1	22.1 (2)
O3—N3—C2—N4	-46.94 (19)	N2—C1—C2—N3	170.01 (15)
O2—N3—C2—N4	137.32 (16)	N2—C1—C2—N4	-72.3 (2)

Table S1. Band angles and dihedral angles for the structure of BDNENA.

Theoretical study: Calculations were carried out by using the Gaussian 03 (Revision E.01) suite of programs.³ The geometric optimization of the structures and frequency analyses were carried out by using the B3LYP functional with the $6-31+G^{**}$ basis set,⁴ and single-point energies were calculated at the MP2(full)/6-311++G^{**} level. All of the optimized structures were characterized to be true local energy minima on the potential-energy surface without imaginary frequencies.

Geometry coordinates

The optimized structure of the following structure [bis(guanidinium) BDNA salt].

		\$	•
1	33	Po .38	Š
0	0.526541	1.351967	0.959596
0	4.191760	0.068133	1.394855
0	2.549239	-0.120180	2.806123
0	4.077373	-1.781073	-0.525592
0	2.033119	-2.190125	-1.159778
Ν	0.000000	0.743506	0.000007
Ν	0.000001	-0.575624	-0.000001
Ν	3.051881	-0.380806	1.705234
Ν	2.853237	-1.712898	-0.340113
С	0.827729	-1.285331	1.020257
Η	0.507269	-2.320579	0.946509
Η	0.574701	-0.906126	2.005197
С	2.292846	-1.116163	0.794353
С	3.246069	1.628359	-1.182106
Ν	2.351695	1.808201	-2.171101
Н	2.352872	1.164556	-2.947034
Н	1.452304	2.217971	-1.955521
Ν	4.332167	0.875636	-1.370077
Η	4.697252	0.425411	-0.525342
Η	4.368116	0.278043	-2.183251
Ν	3.099433	2.283298	-0.022992
Η	2.153085	2.510695	0.261864
Η	3.679716	1.937483	0.740290

0	-0.526541	1.351978	-0.959576
0	-4.191760	0.068139	-1.394855
0	-2.549236	-0.120152	-2.806122
0	-4.077369	-1.781083	0.525576
0	-2.033115	-2.190144	1.159755
Ν	-3.051878	-0.380792	-1.705237
Ν	-2.853233	-1.712905	0.340096
С	-0.827726	-1.285321	-1.020267
Н	-0.507264	-2.320569	-0.946531
Н	-0.574698	-0.906104	-2.005203
С	-2.292843	-1.116157	-0.794362
С	-3.246075	1.628348	1.182118
Ν	-4.332170	0.875620	1.370080
Н	-4.697252	0.425399	0.525342
Н	-4.368120	0.278021	2.183251
Ν	-3.099439	2.283296	0.023010
Н	-2.153091	2.510697	-0.261844
Н	-3.679721	1.937487	-0.740276
Ν	-2.351702	1.808185	2.171116
Н	-2.352878	1.164533	2.947043
Н	-1.452314	2.217961	1.955541

$$O_2N-N \xrightarrow{\bigcirc}{C(NO_2)_2} O_2N-N \xrightarrow{\bigcirc}{C(NO_2)_2}$$

С	-0.256402	0.052053	-2.210914
С	-0.781103	-0.100195	-0.809468
Ν	0.181679	-0.613437	0.189583
С	0.781038	0.227307	1.248937
С	0.282134	-0.020352	2.646089
Ν	1.193606	-0.379892	3.648890
0	0.816267	-0.807965	4.760123
0	2.422729	-0.251009	3.383519
Ν	0.530706	-1.913975	0.131896
0	1.347673	-2.335285	0.971140
0	0.014989	-2.616515	-0.757513
Ν	-0.888377	-0.629631	-3.260511
0	-2.011387	-1.154544	-3.013412
Ο	-0.371972	-0.717747	-4.394497

Ν	0.719789	1.006728	-2.461274
0	1.161311	1.619566	-1.438480
0	1.130261	1.295448	-3.608777
Ν	-1.034611	0.294183	2.953285
0	-1.745464	0.688942	1.975814
0	-1.509232	0.240833	4.111073
Н	-1.634286	-0.773938	-0.845141
Н	-1.107788	0.852554	-0.393600
Н	0.578431	1.246499	0.921001
Н	1.857368	0.070130	1.247483

$$H_3C \xrightarrow{\ominus} NO_2 NO_2$$

С	-7.001058	-0.246088	-0.426835
С	-5.537562	-0.089098	-0.154223
Ν	-4.890407	1.058571	-0.603753
0	-3.662625	1.251237	-0.465626
0	-5.628028	1.924879	-1.175400
Ν	-4.891229	-1.052007	0.615898
0	-3.663500	-1.029311	0.852142
0	-5.629531	-1.979524	1.080630
Н	-7.624260	0.207893	0.358539
Η	-7.251199	0.247480	-1.367374
Н	-7.251788	-1.307409	-0.469083

⊝ C(NO₂)₂H

С	-6.568211	0.113431	0.245351
Ν	-5.759917	1.225093	0.122244
0	-6.351687	2.339781	0.277897
0	-4.536838	1.159207	-0.123328
Ν	-6.177358	-1.204282	0.122242
0	-7.107273	-2.057497	0.277908
0	-5.002440	-1.550446	-0.123330
Η	-7.605684	0.291699	0.457303

Table S2. Ab Initio computional data (B3LYP/6-31+G(d,p)/MP2(full)/6-311++G**)

	E ₀	ZPE	H_{T}	HOF Exp	HOF Calcd
	(hartree)	(hartree)	(hartree)	$(kJ mol^{-1})$	$(kJ mol^{-1})$
$\begin{array}{c} \bigcirc \\ \bigcirc \\ C(NO_2)_2 \\ \bigcirc \\ \bigcirc \\ C(NO_2)_2 \end{array}$	-1232.9160043	0.136771	0.018912	-	26.0
$H_3C \xrightarrow{\ominus} NO_2 NO_2$	-487.381106	0.067130	0.008621	-	-94.8
⊝ C(NO ₂)₂H	-448.1640711	0.039724	0.006879	-	-222.8
NH ₃	-56.43462 ^[2]	0.034377	0.003818	-45.9 ^[a]	-
CH_4	-40.39849 ^[2]	0.044791	0.003812	-74.6 ^[a]	-
CH ₃ CH ₃	-79.6068548	0.074609	0.00443	-84.68 ^[b]	-
CH ₃ NH ₂	-95.6318759	0.064032	0.004369	-23.0 ^[a]	-
[a] .		[b]			

^[a] Eur. J. Inorg. Chem. **2008**, 2560-2568; ^[b] New J. Chem., **2008**, 32, 317-322

References:

- CrystalClear: SM Expert 2.0 r2, An Integrated Program for the Collection and Processing of Area Detector Data, Rigaku Corporation, 2009.
- (2) G. M. Sheldrick, SHELXTL-97, Structure Determination Software Suite. Bruker AXS, Madison WI, 2008.
- (3) Gaussian 03, Revision E.01, M. J.Frisch, G. W.Trucks, H. B.Schlegel, G. E.Scuseria, M. A.Robb, J. R.Cheeseman, J. A.Montgomery, Jr., T.Vreven, K. N.Kudin, J. C.Burant, J. M.Millam, S. S.Iyengar, J.Tomasi, V.Barone, B.Mennucci, M.Cossi, G.Scalmani, N.Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Wallingford CT, **2004**.
- (4) R. G. Parr, W. Yang, *Density Functional Theory of Atoms and Molecules*, Oxford University Press, New York, **1989**.