Supporting Information

Para-Nitroaniline-Functionalized Organic-Inorganic Hybrid Materials

Katharina Ladewig^{a,b}, Andreas Seifert^a, Harald Hahn^a, Michael Hietschold^c, Norbert Moszner^d, Peter Burtscher^d and Stefan Spange^a*

^aInstitute of Chemistry, Chemnitz University of Technology, Strasse der Nationen 62, D-09111

Chemnitz, Germany

^b Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville VIC

3010, Australia

^cInstitute of Physics, Chemnitz University of Technology, Strasse der Nationen 62, D-09111 Chemnitz,

Germany

^cIvoclar Vivadent AG, Bendererstrasse 2, FL-9494 Schaan, Liechtenstein

E-mail: stefan.spange@chemie.tu-chemnitz.de and kladewig@unimelb.edu.au

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is O The Royal Society of Chemistry 2012

Calculation of molar extinction coeffient

$$\varepsilon = \frac{E}{c \cdot d} = \frac{E \cdot V \cdot M}{m \cdot d}; \left[\frac{L}{mol \cdot cm}\right]$$
(S1)

E – extinction;

- $c molar concentration [L \cdot mol^{-1}]$
- V volume of solution used to dissolve the xerogel [L];
- m mass of the dissolved xerogel [g];
- d optical path length [cm];

M – molecular weight $[g \cdot mol^{-1}]$)

Thermal stability of xerogels

Table S1: Results of the thermogravimetric analysis (TGA) of various xerogels. Measurements were

sample	heating rate	weight loss 30–200 °C	weight loss 200–500 °C	weight loss to 500 °C / (800 °C)
B1	40 K min ^{_1}	3.5 %	10.5 %	14.0 %
	40 K min ^{_1}	3.8 %	10.5 %	14.3 % / (20.1 %)
B4	40 K min ^{_1}	4.0 %	10.8 %	14.8 %
B10	40 K min ⁻¹	4.4 %	10.4 %	14.8 %
	10 K min^{-1}	3.9 %	10.1 %	14.0 %
B12	40 K min ⁻¹	2.8 %	10.2 %	13.0 %

performed in dry He atmosphere.

Figure S1: UV/Vis absorption spectra of *p*-nitroaniline functionalized xerogels heat treated for five hours at temperatures of up to 300 °C. Measurements were performed in reflectance technique.

Influence of pH value on optical properties of the chromophoric system

Figure S2: Shift in UV/Vis absorption wavelength of the chromophoric system of p-nitroaniline xerogels with changes in pH. Xerogels were dissolved completely using 1M NaOH and titration was performed using hydrochloric acid.

Figure S3: Representative ¹³C-{¹H}-CP-MAS NMR spectrum of *p*-nitroaniline functionalized xerogels based on the diaminofunctionalized trialkoxysilane DAS and TEOS (molar ratio of 1:10). The chemical structures of the mono- and disubstituted (left side) products as well as their assignment to the observed signals are shown. Signals 5 and 10 (60 ppm and 19 ppm) originate from non-hydrolyzed ethoxy groups of TEOS, signal 8 (30 ppm) from adsorbed acetone. The magic angle spinning (MAS) frequency was set to 12.5 kHz.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is O The Royal Society of Chemistry 2012

Figure S4: Representative ¹³C-{¹H}-CP-MAS-NMR spectrum of *p*-nitroaniline functionalized xerogels based on the triaminofunctionalized trialkoxysilane TAS and TEOS (molar ratio of 1:10), and molecular structure of the most likely di-substituted product. Mono-, di-, or trisubstituted products cannot be distinguished in the spectrum. Signal 7 (30 ppm) originates from adsorbed acetone. The MAS frequency was set to 12.5 kHz. The structure of the disubstituted product is shown.

