Electronic Supplementary Information

Magnetic and optical properties of multifunctional core-shell radioluminescence nanoparticles

Hongyu Chen^a, Daniel C. Colvin^b, Bin Qi^c, Thomas Moore^d, Jian He^e, O. Thompson Mefford^c, Frank Alexis^d, John C. Gore^b, Jeffrey N. Anker^a*

Table of contents :

Fig. S1 SEM images of growth of Gd(OH)CO₃:Eu on spindle-shaped hematite nanoparticles without using an intermediate silica shell

Fig. S2 Zeta potential of (A) hematite nanorice (+26.1 mV), (B) Gd(OH)CO₃:Eu (+11.1 mV), (C) silica coated hematite (-35.9 mV).

Fig. S3 SEM images of nanorice (γ -Fe₂O₃@SiO₂@Gd₂O₃:Eu, solid structure) (A) and corresponding size distribution (B). SEM images of hollow nanorice (SiO₂@Gd₂O₃:Eu) (C), and corresponding size distribution (D).

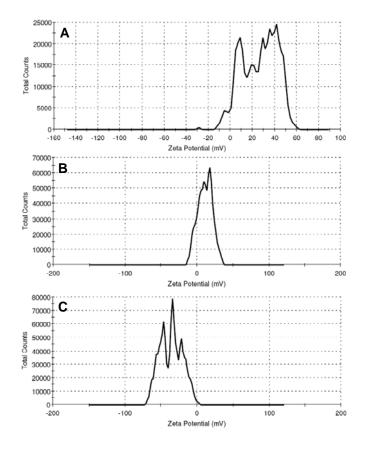
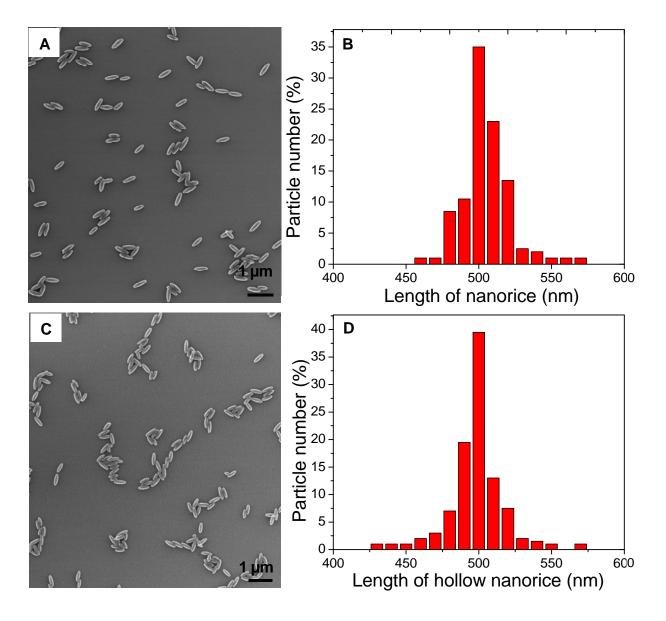
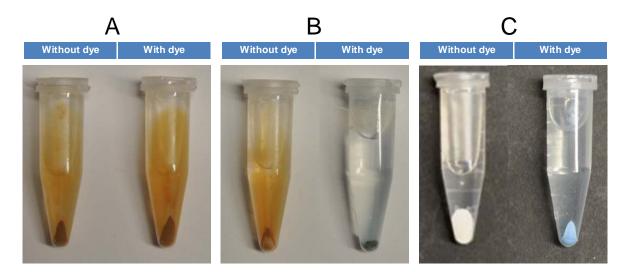
Fig. S4 Photography of nanorice (A), nanoeyes (B), and hollow nanorice (C) with and without bromocresol green encapsulated by a 10 nm silica coating. Samples were obtained after centrifuged for 15 min at 4000 rpm.

Fig. S5 The relaxation rate curves, $1/T_2^*$, as a function of particle concentration. To calculate relaxivity, r_2^* , the curve is fit to a straight line for concentrations up to 0.4 mg/mL) \blacksquare : nanorice, \blacktriangle : nanoeyes (iron oxide core was incubated in oxalic acid for 9.5 h), \bullet hollow nanorice.

Table S1 ICP analysis of Gd^{3+} and Fe^{3+} in nanorice, nanoeyes, and hollow nanorice in 0.8, 0.4, 0.1, 0.05 mg/ml of solution. The 0 value for Fe^{3+} means < 0.01 mg/L, i.e. below the limit of detection.

Table S2 r_2 and r_2^* calculated based on molar concentration Gd^{3+} , Fe^{3+} , $Gd^{3+}+Fe^{3+}$, and weight concentration of particles.

Fig. S1. SEM images of growth of $Gd(OH)CO_3$:Eu on spindle-shaped hematite nanoparticles without using an intermediate silica shell.

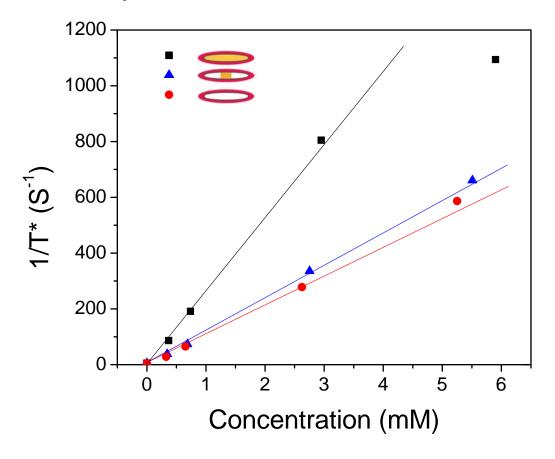

Fig. S2. Zeta potential of (A) hematite nanorice (+26.1 mV), (B) Gd(OH)CO₃:Eu (+11.1 mV), (C) silica coated hematite (-35.9 mV).

Fig. S3. SEM images of nanorice (γ -Fe₂O₃@SiO₂@Gd₂O₃:Eu, solid structure) (A) and corresponding size distribution (B). SEM images of hollow nanorice (SiO₂@Gd₂O₃:Eu) (C), and corresponding size distribution (D).

Fig. S4 Photography of nanorice (A), nanoeyes (B), and hollow nanorice (C) without and with bromocresol green dye encapsulated by a ~ 10 nm silica coating. Samples were obtained after centrifuged for 15 min at 4000 rpm.

Fig. S5 The relaxation rate curves, $1/T_2^*$, as a function of particle concentration. To calculate relaxivity, r_2^* , the curve is fit to a straight line for concentrations up to 0.4 mg/mL) \blacksquare : nanorice, \blacktriangle : nanoeyes (iron oxide core was incubated in oxalic acid for 9.5 h), \bullet hollow nanorice.

Weight concentration Type of nanoparticle		0.8 mg/ml	0.4 mg/ml	0.1 mg/ml	0.05 mg/ml
Nanorice	Gd^{3+}	4.700 mM	2.350 mM	0.588 mM	0.294 mM
	Fe ³⁺	1.200 mM	0.600 mM	0.150 mM	0.075 mM
Nanoeyes	Gd^{3+}	4.780 mM	2.390 mM	0.598 mM	0.299 mM
	Fe ³⁺	0.730 mM	0.365 mM	0.091 mM	0.046 mM
Hollow	Gd^{3+}	5.250 mM	2.626 mM	0.656 mM	0.328 mM
nanorice	Fe ³⁺	0 mM	0 mM	0 mM	0 mM

Table S1. ICP analysis of Gd^{3+} and Fe^{3+} in nanorice, nanoeyes, and hollow nanorice in 0.8, 0.4, 0.1, 0.05 mg/ml of solution. The 0 value for Fe^{3+} means < 0.01 mg/L, i.e. below the limit of detection.

Table S2. r_2 and r_2^* calculated based on molar concentration Gd^{3+} , Fe^{3+} , $Gd^{3+}+Fe^{3+}$, and weight concentration of particles.

	Relaxivity		_
Type of nanop	particle	\mathbf{r}_2	\mathbf{r}_{2}^{*}
Nanorice	Weight concentration	$514 \text{ ml mg}^{-1}\text{s}^{-1}$	2029 ml mg ⁻¹ s ⁻¹
	Molar concentration (Gd^{3+})	86.28 mM ⁻¹ s ⁻¹	$344.10 \text{ mM}^{-1}\text{s}^{-1}$
	Molar concentration (Fe ³⁺)	$337.92 \text{ mM}^{-1}\text{s}^{-1}$	1347.71 mM ⁻¹ s ⁻¹
	Molar concentration ($Gd^{3+}+Fe^{3+}$)	68.73 mM ⁻¹ s ⁻¹	$274.11 \text{ mM}^{-1}\text{s}^{-1}$
Nanoeyes	Weight concentration	$454 \text{ ml mg}^{-1}\text{s}^{-1}$	847 ml mg ⁻¹ s ⁻¹
	Molar concentration (Gd^{3+})	66.97 mM ⁻¹ s ⁻¹	$138.82 \text{ mM}^{-1}\text{s}^{-1}$
	Molar concentration (Fe ³⁺)	$438.54 \text{ mM}^{-1}\text{s}^{-1}$	$909.00 \text{ mM}^{-1}\text{s}^{-1}$
	Molar concentration ($Gd^{3+}+Fe^{3+}$)	$58.10 \text{ mM}^{-1}\text{s}^{-1}$	$120.43 \text{ mM}^{-1}\text{s}^{-1}$
Hollow nanorice	Weight concentration	322 ml mg ⁻¹ s ⁻¹	701 ml mg ⁻¹ s ⁻¹
	Molar concentration (Gd ³⁺)	$46.00 \text{ mM}^{-1}\text{s}^{-1}$	111.76 mM ⁻¹ s ⁻¹