## **Electronic Supplementary Information**

# A new approach to the reduced graphite oxide with tetrathiafulvalene in the presence of metal ions

Ge Yang, Guanxin Zhang,\* Peng Sheng, Fei Sun, Wei Xu, Deqing Zhang\*

Beijing National Laboratory, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

E-mail: dqzhang@iccas.ac.cn

### Contents

| 1. Cyclic voltammograms of GO, TTF and compounds 1 and 2S2                                     |
|------------------------------------------------------------------------------------------------|
| 2. Microscope images of exfoliated graphite oxide (GO)S2                                       |
| 3. Absorption spectra of TTF and GO in the presence of different metal ions                    |
| 4. ESR spectrum of TTF and GO in the presence of Pb <sup>2+</sup> S5                           |
| 5. Absorption spectra of the ensemble of compound 1 and GO in the presence of Sc <sup>3+</sup> |
| 6. ESR spectrum of compound 1 and GO in the presence of Sc <sup>3+</sup>                       |
| 7. Raman spectra of GO and RGOS6                                                               |
| 8. Temperature-dependent conductivity of RGOS6-S7                                              |
| 9. IR spectra of GO and RGO used KSCN as internal standardS8                                   |



#### 1. Cyclic voltammograms of GO, TTF and compounds 1 and 2

**Figure S1.** (a) The reduction potential of graphite oxide measured with differential pulse voltammetry in the absence and presence of  $Sc^{3+}$ ; (b) Cyclic voltammograms of TTF and compounds **1** and **2** in the mixture of CH<sub>2</sub>Cl<sub>2</sub> and DMF (100:1, v:v); Electrochemical measurements were performed in a standard three-electrode cell, with glassy carbon as the working electrode and platinum wire as the counter electrode, and Ag/AgCl electrode (saturated KCl) as the reference electrode, *n*-Bu<sub>4</sub>NPF<sub>6</sub> (0.1 M) was used as supporting electrolyte.

### 2. Microscope images of exfoliated graphite oxide (GO)



Figure S2. Tapping mode AFM (*left*), SEM (*middle*), TEM (*right*) images of exfoliated graphite oxide.

# **3.** Absorption spectra of TTF and GO in the presence of different metal ions







**Figure S3.** The absorption spectra of TTF  $(1.0 \times 10^{-5} \text{ M})$  and GO (0.02 mg/mL) in the mixture of CH<sub>2</sub>Cl<sub>2</sub> and DMF (100:1, v:v) after addition of different amounts of Pb<sup>2+</sup>(a), Zn<sup>2+</sup> (b), Na<sup>+</sup> (c), K<sup>+</sup> (d), Cs<sup>+</sup>(e), Mg<sup>2+</sup> (f), Ca<sup>2+</sup> (g), and Ba<sup>2+</sup> (h), respectively; the absorptions due to GO were subtracted in each case.

4. ESR spectrum of TTF and GO in the presence of Pb<sup>2+</sup>



**Figure S4.** ESR spectra of TTF  $(1.0 \times 10^{-5} \text{ M})$  and GO (0.02 mg/mL) in the mixture of CH<sub>2</sub>Cl<sub>2</sub> and DMF (100:1, v:v) in the presence of 5.0 equiv of Pb<sup>2+</sup>; the spectrum was recorded at room temperature, and the solution was degassed before measurement.

# 5. Absorption spectra of the ensemble of compound 1 and GO in the presence of $Sc^{3+}$



**Figure S5** The absorption spectra of compound 1 ( $1.0 \times 10^{-5}$  M) and GO (0.02 mg/mL) in the mixture of CH<sub>2</sub>Cl<sub>2</sub> and DMF (100:1, v:v) after addition of different amounts of Sc<sup>3+</sup>; the absorptions due to GO were subtracted in each case; the inset shows the 500-800 nm part of the absorption spectra in the presence of increasing amounts of Sc<sup>3+</sup>.

#### 6. ESR spectrum of compound 1 and GO in the presence of Sc<sup>3+</sup>



**Figure. S6** ESR spectrum of compound **1**  $(1.0 \times 10^{-5} \text{ M})$  and GO (0.02 mg/mL) in the mixture of CH<sub>2</sub>Cl<sub>2</sub> and DMF (100:1, v:v) in the presence of 5.0 equiv of Sc<sup>3+</sup>; the spectrum was recorded at room temperature, and the solution was degassed before measurement.

7. Raman spectra of GO and RGO



**Figure S7** Raman spectra of GO before (a) and after reduction: (b) with  $TTF + Pb^{2+}$ , (c) compound  $1 + Sc^{3+}$ .

### 8. Temperature-dependent conductivity of RGO



**Figure S8** The variation of conductivity of RGO from the reduction of GO with TTF in the presence of  $Sc^{3+}vs$ . temperature.



**Figure S9** The variation of conductivity of RGO from the reduction of GO with TTF in the presence of  $Pb^{2+}$  vs. temperature.



**Figure S10** The variation of conductivity of RGO from the reduction of GO with compound **1** in the presence of  $Sc^{3+}$  vs. temperature.

## 9. IR spectra of GO and RGO used KSCN as internal standard



**Figure S11** (*left*) IR spectrum of the compressed platelet of GO, KSCN and KBr; (*right*) IR spectrum of the compressed platelet of RGO, KSCN and KBr; for each case the same amount of KSCN, KBr and RGO/GO were used.