Supporting Information For

Fuel purification, Lewis acid and aerobic oxidation catalysis performed by a microporous Co-BTT ($BTT^{3-} = 1,3,5$ -benzenetristetrazolate) framework having coordinatively unsaturated sites

Shyam Biswas,^{*a*} Michael Maes,^{*b*} Amarajothi Dhakshinamoorthy,^{*c*} Mark Feyand,^{*a*} Dirk E. De Vos,^{*b*} Hermenegildo Garcia,^{*c*} and Norbert Stock^{*a*}

^{*a*} Institut für Anorganische Chemie, Christian-Albrechts-Universität, Max-Eyth-Strasse 2, 24118 Kiel, Germany. E-mail: stock@ac.uni-kiel.de; Tel: +49-4318801675; Fax: +49-4318801775

^b Centre for Surface Chemistry and Catalysis, Katholieke Universiteit Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium ^c Instituto Universitario de Tecnología Química CSIC-UPV and Departamento de Química, Universidad Politécnica de Valencia, Av. De los Naranjos s/n, 46022 Valencia, Spain

Table of Contents:

Fig. S1 View of the (3,8)-connected topological net of 1	Page S2
Fig. S2 Theoretical and experimental XRPD patterns of 1	Page S3
Fig. S3 Theoretical and experimental XRPD patterns of 2	Page S4
Fig. S4 XRPD patterns of 1 in different forms	Page S5
Fig. S5 XRPD patterns of 2 in different forms	Page S6
Fig. S6 FT-IR spectra of as-synthesized 1 and 2	Page S7
Fig. S7 FT-IR spectra of methanol-exchanged 1 and 2	Page S7
Fig. S8 TG analysis of methanol-exchanged 1	Page S8
Fig. S9 TG analysis of hydrated 1	Page S8
Fig. S10 TG analysis of methanol-exchanged 2	Page S9
Fig. S11 TG analysis of hydrated 2	Page S9
Fig. S12 Fluorescence spectra of as-synthesized 2 and free H ₃ BTT	Page S10
Fig. S13 UV-Vis spectra of as-synthesized and thermally activated 1	Page S10
Fig. S14 Photos of 1 showing colour changes in different forms	Page S11
Fig. S15 Reusability test for ring opening of epoxide with 1	Page S11
Table S1 Elemental analyses of the compounds in different forms	Page S12
Table S2 Bond lengths for 1	Page S12
Table S3 Bond lengths for 2	Page S13

Fig. S1. Wire representation of a portion of the framework of 1 (or 2) showing its 3D topological connectivity considering BTT ligands and square-planar $[M_4Cl]^{7+}$ units (M = Co, 1; Cd, 2) as 3 (blue) and 8 (grey) – connected nodes, respectively, to form the (3,8)-connected "Moravia" net.

Fig. S3. Theoretical (black) and experimental (blue) XRPD patterns of 2.

Fig. S4. XRPD patterns of 1 in different forms: as-synthesized (black), methanolexchanged (blue), thermally activated (green), and after use in ring-opening of styrene oxide with methanol for thrice (red).

Fig. S5. XRPD patterns of 2 in different forms: as-synthesized (black), methanolexchanged (blue), and thermally activated (green).

Fig. S6. Comparison between the FT-IR spectra of as-synthesized 1 (black) and 2 (blue).

Fig. S7. Comparison between the FT-IR spectra of methanol-exchanged 1 (black) and 2 (blue).

Fig. S8. TG analysis of methanol-exchanged 1.

Fig. S9. TG analysis of hydrated 1.

Fig. S10. TG analysis of methanol-exchanged 2.

Fig. S11. TG analysis of hydrated 2.

Fig. S12. Solid-state photoluminescence spectra of as-synthesized 2 and free H_3BTT ligand.

Fig. S13. Solid-state UV-Vis spectra of as-synthesized and thermally activated 1.

Fig. S14. Photos of **1** showing colour changes in different forms: (a) as-synthesized, (b) methanol-exchanged, (c) thermally activated and (d) after catalysis.

Fig. S15. Reusability test for ring opening of epoxide with methanol using thermally activated 1 as catalyst. Squares, circles and triangles correspond to the first, second and third cycle, respectively. Reaction conditions: (a) styrene oxide (0.1 mL), thermally activated 1 (20 mg), methanol (5 mL), 50 °C.

Compound	Molecular Formula	C _{obs.} / C _{cal.} (%)	H _{obs.} / H _{cal.} (%)	N _{obs.} / N _{cal.} (%)
1-as- synthesized	[Co(C ₄ H ₉ NO) ₆] ₃ [(Co ₄ Cl) 3	30.34 / 30.56	3.21 / 3.34	34.27 / 34.65
	$(C_9H_3N_{12})_8(H_2O)_{12}]_2$ · 12H_2O			
1-methanol- exchanged	$[Co(CH_{3}OH)_{6}]_{3}[(Co_{4}Cl)_{3} \\ (C_{9}H_{3}N_{12})_{8}(CH_{3}OH)_{12}]_{2} \\ 40(CH_{3}OH)$	30.63 / 30.50	3.97 / 4.25	30.29 / 30.22
1-hydrated	$[Co(H_2O)_6]_3[(Co_4Cl)_3 (C_9H_3N_{12})_8(H_2O)_{12}]_2 \cdot 62(H_2O)$	21.53 / 21.23	3.51 / 3.16	32.97 / 33.01
2-as- synthesized	$[Cd(C_{3}H_{7}NO)_{6}]_{3}[(Cd_{4}Cl)$ $^{3}(C_{9}H_{3}N_{12})_{8}(H_{2}O)_{12}]_{2}\cdot 14$ $(H_{2}O)\cdot 4(C_{3}H_{7}NO)$	25.17 / 25.20	2.63 / 2.79	29.64 / 29.95
2-methanol- exchanged	$[Cd(CH_{3}OH)_{6}]_{3}[(Cd_{4}Cl)_{3} \\ (C_{9}H_{3}N_{12})_{8}(CH_{3}OH)_{12}]_{2} \\ 40(CH_{3}OH)$	25.96 / 26.24	3.43 / 3.66	26.12 / 26.00
2-hydrated	$\begin{array}{l} [Cd(H_2O)_6]_3[(Cd_4Cl)_3\\ (C_9H_3N_{12})_8(H_2O)_{12}]_2\\ \hline 56(H_2O) \end{array}$	18.05 / 18.24	2.73 / 2.59	28.15 / 28.36

Table S1. Elemental analyses of the compounds in different forms.

Table S2. Bond lengths (Å) for 1.

Co(1)-O(1)	2.082(7)	N(2)-N(2)#6	1.317(7)		
Co(1)-N(2)#1	2.098(3)	N(2)-N(1)	1.337(4)		
Co(1)-N(2)	2.098(3)	N(1)-C(1)	1.348(4)		
Co(1)-N(2)#2	2.098(3)	C(2)-C(3)#7	1.390(4)		
Co(1)-N(2)#3	2.098(3)	C(2)-C(3)	1.390(4)		
Co(1)-Cl(1)	2.6007(12)	C(2)-C(1)	1.448(7)		
Cl(1)-Co(1)#1	2.6007(12)	C(1)-N(1)#6	1.348(4)		
Cl(1)-Co(1)#4	2.6007(12)	C(3)-C(2)#8	1.390(4)		
Cl(1)-Co(1)#5	2.6007(12)				

Symmetry operators used to generate equivalent atoms are #1: -x, y, -z+1; #2: -x, y, z; #3: x, y, -z+1; #4: x, z, -y+1; #5: -x, -y+1, -z+1; #6: x, -z+1, -y+1; #7: y, -z+1, -x+1; #8: - z+1, x, -y+1.

Table S3. Bond lengths (Å) for 2.				
Cd(1)-O(1)	2.301(8)	C(1)-N(1)#6	1.335(4)	
Cd(1)-N(2)#1	2.329(3)	C(1)-N(1)	1.335(4)	
Cd(1)-N(2)#2	2.329(3)	C(1)-C(2)	1.476(7)	
Cd(1)-N(2)	2.329(3)	N(1)-N(2)	1.326(4)	
Cd(1)-N(2)#3	2.329(3)	N(2)-N(2)#6	1.295(6)	
Cd(1)- $Cl(1)$	2.8032(6)	C(3)-C(2)#7	1.385(4)	
Cl(1)-Cd(1)#4	2.8032(6)	C(3)-C(2)	1.385(4)	
Cl(1)-Cd(1)#5	2.8032(6)	C(2)-C(3)#8	1.385(4)	
$C_{1(1)}$ - $C_{d(1)}$ #2	2,8032(6)			

 Cl(1)-Cd(1)#2
 2.8032(6)

 Symmetry operators used to generate equivalent atoms are #1: x, -y, z; #2: -x+1, y, z; #3:

 -x+1, -y, z; #4: -z+1, -y, x; #5: -x+1, -y, -z+1; #6: -z+1, y, -x+1; #7: y+1, -z, -x+1; #8: -z+1, x-1, -y.