Supporting information for

The energy landscapes of zeolitic imidazolate frameworks (ZIFs): towards quantifying the presence of substituents on the imidazole ring

Igor A. Baburin and Stefano Leoni*

Physikalische Chemie, Technische Universität Dresden, Bergstrasse 66b, D-01062 Dresden, Germany

* Email: Stefano.Leoni@chemie.tu-dresden.de

Structure type	Energy, eV/Zn(F- imid) ₂	Difference, eV/Zn(F-imid) ₂	ρ, g/cm ³	Zn-N, Å	N-Zn-N, degr.	Closest HH contact, Å	C-HF, Å (*)
coi	-5037.8004	0.0000	2.040	1.947-2.000	99.10-126.87	2.170	2.068- 2.378
zni	-5037.7658	0.0346	1.948	1.953-1.997	98.68-117.74	2.097	2.065- 2.195
irl	-5037.6472	0.1532	1.888	1.967-2.011	92.01-117.74	2.703	2.090- 2.319
unj	-5037.4308	0.3696	1.360	1.949-1.987	99.78-119.52	2.610	2.192- 2.366
neb	-5037.3408	0.4596	1.586	1.963-1.998	105.29-116.16	2.522	-
uni	-5037.3080	0.4924	1.415	1.950-2.014	97.08-116.89	2.685	2.114- 2.223
unc	-5037.2690	0.5314	1.528	1.968-1.999	98.17-126.74	2.584	2.100- 2.339
dia	-5037.2274	0.5730	1.258	1.954-1.993	100.39-117.72	2.820	2.210
cfc	-5037.2220	0.5784	1.216	1.961-1.993	94.87-118.10	2.609	2.041- 2.444
crb	-5037.2156	0.5848	1.183	1.958-1.990	104.64-114.64	2.696	2.108- 2.348
gsi	-5037.2154	0.5850	1.674	1.943-2.018	92.69-133.22	2.389	2.227- 2.489
dft	-5037.1968	0.6036	1.089	1.954-1.985	103.30-114.91	2.823	2.435- 2.454
cag	-5037.1541	0.6463	1.504	1.954-1.985	105.53-114.62	2.218	-
mer	-5037.1253	0.6751	0.906	1.958-1.976	104.47-113.36	2.804	2.312- 2.396
lon	-5037.1058	0.6946	1.221	1.967-2.003	96.49-121.75	2.785	2.137- 2.181
sra	-5037.0961	0.7043	1.113	1.946-1.997	99.26-123.99	2.796	2.380- 2.438
sod	-5037.0887	0.7117	0.986	1.955-1.970	104.97-114.42	2.828	2.280- 2.297
lta	-5037.0711	0.7293	0.812	1.953-2.007	100.23-118.17	2.242	2.283- 2.423
unh	-5037.0249	0.7755	1.371	1.980-2.010	98.69-126.76	2.761	-
pcb	-5037.0183	0.7821	0.976	1.954-1.977	99.77-127.16	2.674	2.355
lcs	-5037.0119	0.7885	1.283	1.956-1.958	104.83-112.27	2.817	-
mmt	-5036.9988	0.8016	1.337	1.962-2.026	96.24-135.20	2.156	2.123- 2.397
gis	-5036.9437	0.8567	0.884	1.955-1.980	97.18-119.84	2.585	-
pcl	-5036.9302	0.8702	0.996	1.941-1.996	95.74-123.74	2.509	2.297
qtz	-5036.8242	0.9762	1.489	1.974-1.977	99.97-127.85	2.315	-

Table S1. Total energies, densities, selected distances and angles in Zn(F-imid)₂

(*) The angle \angle C-H...F was assumed to be greater than 120°.

Structure type	Energy, eV/Zn(mim) ₂	Difference, eV/Zn(mim) ₂	ρ, g/cm ³	Zn-N, Å	N-Zn-N, degr.	Closest HH contact, Å (*)
zni	-4138.2084	0.0000	1.722	1.987-2.035	101.2-118.9	1.943
crb	-4138.1410	0.0674	1.343	1.971-2.009	98.98-121.65	2.335
coi	-4138.1065	0.1019	1.764	1.997-2.056	99.14-119.84	2.022
dia	-4138.0617	0.1467	1.555	1.975-1.990	98.62-115.24	2.445
uni	-4138.0526	0.1558	1.369	1.967-2.012	98.25-125.17	2.338
sod	-4138.0494	0.1590	0.946	1.969-1.973	107.29-110.61	2.292
qtz	-4138.0349	0.1735	1.451	1.974-1.982	101.26-123.75	2.141
unc	-4138.0030	0.2054	1.303	1.971-2.023	98.51-125.52	2.166
cfc	-4137.9951	0.2133	1.132	1.963-1.991	97.28-119.524	2.452
lon	-4137.9798	0.2286	1.115	1.967-1.998	96.43-119.10	2.540
irl	-4137.9740	0.2344	1.311	1.966-2.015	93.46-127.91	2.249
mmt	-4137.9660	0.2424	1.498	1.964-2.050	94.64-135.91	2.089
gis	-4137.9199	0.2885	0.828	1.981-2.003	100.40-119.80	2.101
unj	-4137.9028	0.3056	1.152	1.974-2.007	102.34-120.47	2.274
cag	-4137.8966	0.3118	1.091	1.979-2.002	100.44-117.60	2.431
pcl	-4137.8884	0.3200	0.943	1.973-2.006	95.66-128.46	2.068
gsi	-4137.8834	0.3250	1.362	1.975-2.030	92.48-131.47	2.044
sra	-4137.8784	0.3300	0.968	1.970-2.000	101.25-123.13	2.117
dft	-4137.8714	0.3370	0.951	1.975-2.008	100.89-116.50	2.352
mer	-4137.8669	0.3415	0.842	1.979-2.023	101.99-119.05	2.151
neb	-4137.8620	0.3464	1.406	1.978-2.003	101.86-122.71	2.153
pcb	-4137.8356	0.3728	0.874	1.964-2.022	97.90-123.81	1.994
lcs	-4137.7763	0.4321	1.166	1.998-2.003	100.52-115.9	2.288
lta	-4137.6618	0.5466	0.795	1.976-2.025	98.59-117.79	2.040
unh	-4137.3129	0.8955	1.096	1.995-2.052	97.71-128.51	2.139

Table S2. Total energies, densities, selected distances and angles in Zn(mim)₂

(*) Short H...H contacts (~1.8 Å) within CH₃-groups are not considered.

Table S3. Total energies of experimentally characterized Zn(imid)₂ polymorphs*

Framework topology	Space group	Total energy, eV per formula unit Zn(imid) ₂
coi	$I4_1$	-3761.1530
zni	$I4_1cd$	-3761.0871
cag	Pbca	-3760.7415
mer	I4/mmm	-3760.6374
gis	I4 ₁ /amd	-3760.6314
dft	$P4_2/mnm$	-3760.6047
crb	Pbca	-3760.5177

* Referred to the basis set used in the present paper (the same as in I. A. Baburin, S. Leoni and G. Seifert, *J. Phys. Chem. B*, 2008, **112**, 9437)

Basis set parameters

I. Zn(mim)₂:

%block PA	D.Basis
HGGAtm2	1
n=1 0	2 P 1
4.709	3.760
1.000	1.000
CGGAtm2	2
n=2 0	2
4.088	3.347
1.000	1.000
n=2 1	2 P 1
4.870	3.475
1.000	1.000
NGGAtm2	2
n=2 0	2
3.684	2.869
1.000	1.000
n=2 1	2 P 1
4.280	2.905
1.000	1.000
ZnGGAtm2	2
n=4 0	2 P 1
5.893	5.399
1.000	1.000
n=3 2	2
3.154	1.775
1.000	1.000
%endblock	PAO.Basis

II. Zn(F-im)₂:

%block PAO.Basis HGGAtm2 1 2 P 1 n=1 0 3.760 4.709 1.000 2 1.000 CGGAtm2 n=2 0 2 3.347 1.000 4.088 1.000 n=2 1 2 P 1 3.475 1.000 4.870 1.000 NGGAtm2 2 n=2 0 2 2.869 3.684 1.000 1.000 n=2 1 2 P 1 2.905 4.280 1.000 1.000 2 FGGAtm2 n=2 0 2 2.2 1.000 1 3.012 1.000 n=2 1 2 P 1 3.588 2.260 1.000 1.000 2 ZnGGAtm2 2 P 1 n=4 0 5.399 5.893 1.000 1.000 n=3 2 2 3.154 1.775 1.000 1.000 %endblock PAO.Basis

Define Basis set # Species label, number of l-shells # n, l, Nzeta, Polarization, NzetaPol # Species label, number of l-shells # n, l, Nzeta, Polarization, NzetaPol # Species label, number of l-shells # n, l, Nzeta # n, l, Nzeta, Polarization, NzetaPol # Species label, number of l-shells # n, l, Nzeta, Polarization, NzetaPol # Species label, number of l-shells # n, l, Nzeta, Polarization, NzetaPol # n, l, Nzeta

Define Basis set # Species label, number of l-shells # n, l, Nzeta, Polarization, NzetaPol # Species label, number of l-shells # n, l, Nzeta, Polarization, NzetaPol # Species label, number of l-shells # n, l, Nzeta # n, l, Nzeta, Polarization, NzetaPol # Species label, number of l-shells # n, l, Nzeta # n, l, Nzeta # n, l, Nzeta # n, l, Nzeta # n, l, Nzeta, Polarization, NzetaPol # Species label, number of l-shells # n, l, Nzeta, Polarization, NzetaPol # Species label, number of l-shells # n, l, Nzeta, Polarization, NzetaPol # n, l, Nzeta, Polarization, NzetaPol # n, l, Nzeta