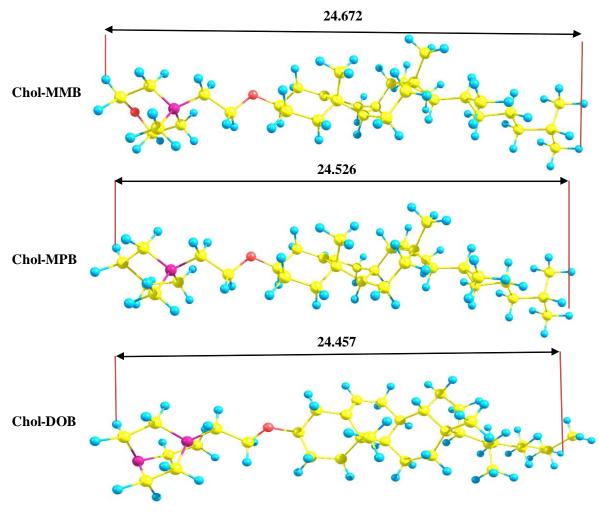
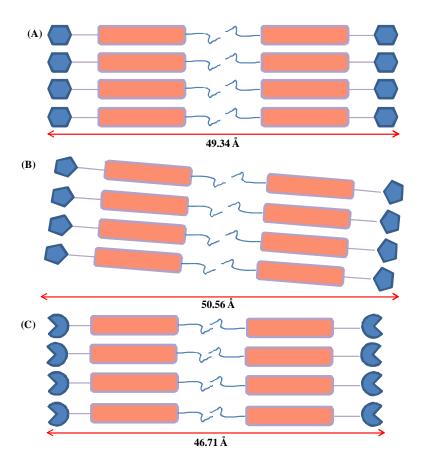
Supporting Information

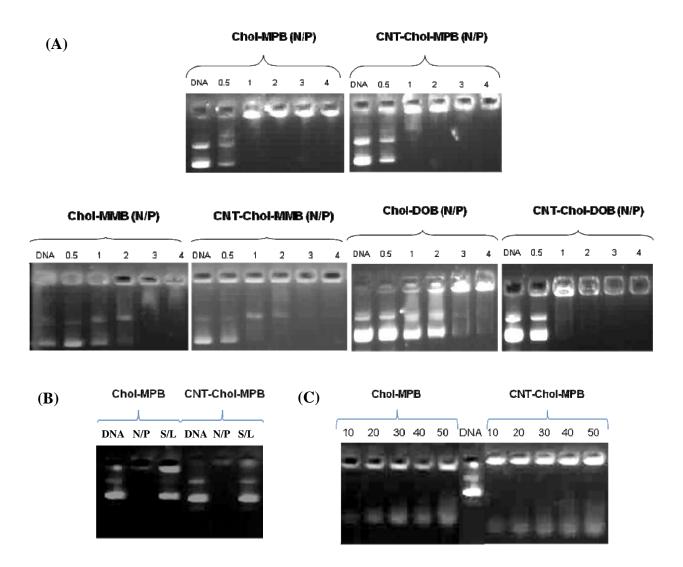
Loading of Single-walled Carbon Nanotubes in Cationic Cholesterol Suspensions Significantly Improve Gene Transfection Efficiency in Serum

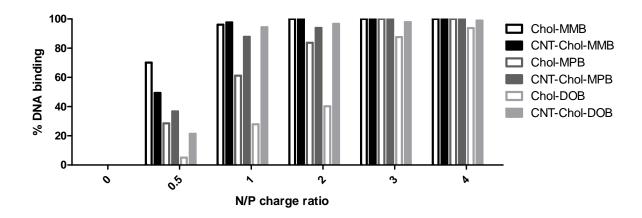

Santosh K. Misra,^a Parikshit Moitra,^a Bhupender S. Chhikara,^a Pataru Kondaiah^b and
Santanu Bhattacharya ^{a,c}*

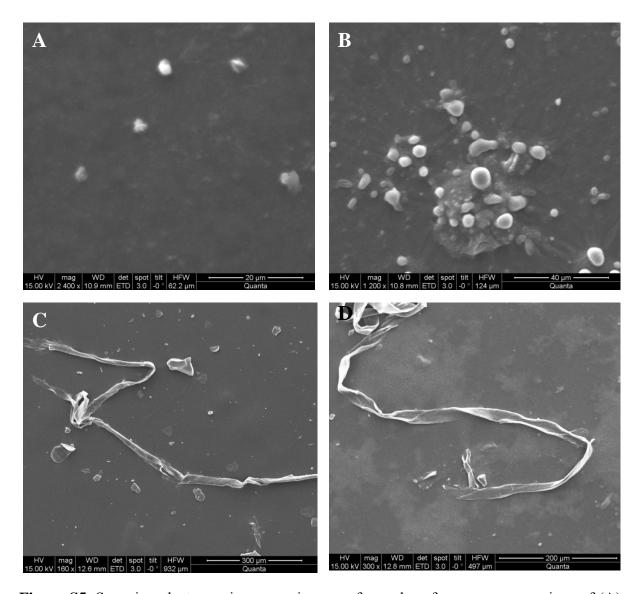
^aDepartment of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India.
 ^bDepartment of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560 012, India.

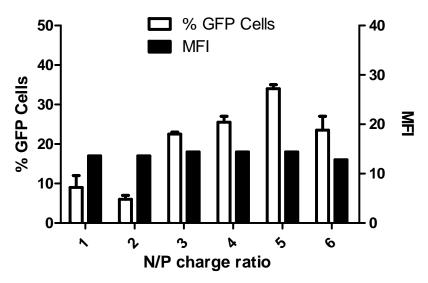

^cChemical Biology Unit of JNCASR, Bangalore 560 064, India.

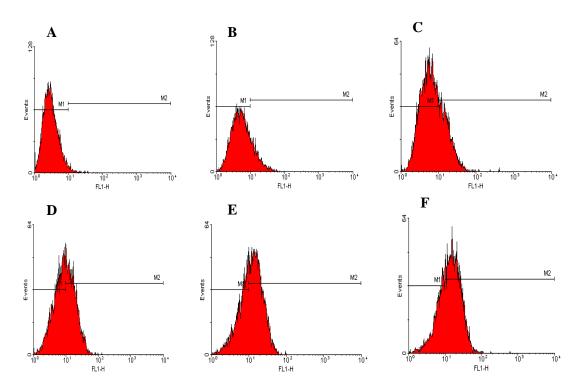
*Corresponding author. Email: <u>sb@orgchem.iisc.ernet.in</u> Phone: (91)-80-2293-2664; Fax: (91)-80-2360-0529.

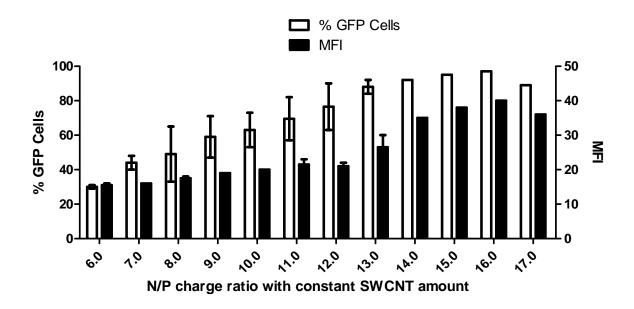

Figure No. Content	Page No.
S1. Energy-minimized structure of the cationic cholesterol	3
S2. Probable model for bilayer arrangements	4
S3. DNA binding ability of formulations	5
S4. Extent of DNA binding	6
S5. Scanning electron microscopy images	7
S6. Optimization of the amount of SWCNT in CNT-Chol-MPB-DNA complex	8
S7. Histogram showing an increase in transfected cell population	9
S8. Effect of cationic Chol-MPB amount on the gene transfection efficiency	10
S9. Effect of the variation of the amount of DNA on gene transfection	11
S10. Shift in the FACS peak, on pEGFP-C3 reporter gene transfection	12

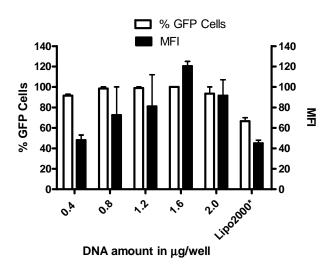

Figure S1. Energy-minimized structure of the cationic cholesterol, Chol-MMB, Chol-MPB and Chol-DOB where 'yellow' atom represents the Carbon atom, light blue: the Hydrogen, purple: Nitrogen and red represents Oxygen.


Figure S2. Probable model for bilayer arrangements of (A) Chol-MMB; (B) Chol-MPB and (C) Chol-DOB aggregates as observed from the XRD measurements.


Figure S3. DNA binding ability of formulations based on Chol-lipid alone and CNT-Chollipid composites having identical amount of lipid (A). SDS mediated DNA release efficiency of Chol-MPB-DNA and CNT-Chol-MPB-DNA complex, where N/P represents Lipid/DNA charge ratio = 3/2 and S/L represents SDS/Lipid molar ratio = 1 (B). Comparison of the stability of Chol-MPB-DNA and CNT-Chol-MPB-DNA complexes in various % of FBS (10 – 50%) added to the complexes (C). Each well has $0.2 \mu g$ of DNA.


Figure S4. Extent of DNA binding with different cationic Chol lipid suspensions, with or without CNT as obtained from gel electrophoresis. Experiment was performed using $0.2~\mu g$ DNA/well.


Figure S5. Scanning electron microscopy images of samples of aqueous suspensions of (A) Chol-MPB; (B) Chol-MPB-DNA; (C) CNT-Chol-MPB and CNT-Chol-MPB-DNA.


Figure S6. Optimization of the amount of SWCNT in CNT-Chol-MPB-DNA complex. N/P charge ratio represents the ratio of the cationic chol and DNA base molarity present in the complex. Experiment was performed using 0.8 μg DNA/well in A549 cells.

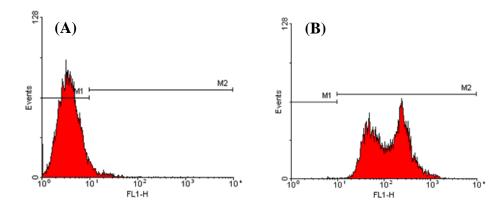

Figure S7. Histogram showing an increase in M2 cell population (cells with GFP expression) with increases in N/P charge ratio from 0-to-5 (A-F). Experiment was performed using 0.8 μ g DNA/well in A549 cells.

Figure S8. Effect of gradual increases of cationic Chol-MPB in pre-formed CNT-Chol-MPB-DNA complex on the gene transfection efficiency. Experiment was performed using $0.8~\mu g$ DNA/well in A549 cells.

Figure S9. Effect of the variation of the amount of DNA on pEGFP-C3 gene transfection. Aqueous suspension of SWCNT-Chol lipid was used for experiment in presence of different percentage of serum. 1.6 μ g of DNA per well for 60,000 cells is best optimized for the reporter gene feed.

Figure S10. Shift in the FACS peak, on pEGFP-C3 reporter gene transfection in A549 cells in absence of serum. FACS histogram shows population of (A) un-transfected cells and (B) transfected cells. CNT-Chol-MPB suspension at N/P charge ratio = 15 with DNA = 1.6 μ g/well was used in the transfection experiment. The region 'M1' shows the residual fluorescence which belongs to non-specific proteins present in cells while 'M2' region shows the fluorescence originated from the GFP alone, expressed from reporter gene introduced in A549 cells via CNT-lipid mediated transfection.