Electronic Supplementary Information for:

Tuning the Photophysical Properties of N^N Pt(II) Bisacetylide Complexes with Fluorene Moiety and Its Applications for Triplet-triplet-annihilation based Upconversion

Qiuting Li, Huimin Guo,* Lihua Ma, Wanhua Wu, Yifan Liu and Jianzhang Zhao*

State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China. Fax: +86 (0) 411 8498 6236

 $E\text{-mail: guohm@dlut.edu.cn} \ (H.G.) \quad and \quad zhaojzh@dlut.edu.cn} \ (J.Z.)$

Group webpage: http://finechem.dlut.edu.cn/photochem

Index

General information
Scheme S1 Synthesis of the ligands
Synthesis procedure and characterization dataS5
Fig S1. ¹ H NMR of 1
Fig S2. ESI-MSof 1
Fig S3. ¹ H NMR of 2
Fig S4. ESI-MSof 2
Fig S5. ¹ H NMR of 3a S8
Fig S6. ESI-MSof 3a
Fig S7. ¹ H NMR of L-1
Fig S8. ¹³ C NMR of L-1
Fig S9. HR-MALDI-MS of L-1
Fig S10. ¹ H NMR of Pt-1
Fig S11. ¹³ C NMR of Pt-1
Fig S12. HR-MALDI-MS of Pt-1
Fig S13. ¹ H NMR of 3b
Fig S14. ESI-MSof 3b
Fig S15. ¹ H NMR of L-2
Fig S16. ¹³ C NMR of L-2
Fig S17. HR-MALDI-MS of L-2
Fig S18. ¹ H NMR of Pt-2
Fig S19. ¹³ C NMR of Pt-2
Fig S20. HR-MALDI-MS of Pt-2
Fig S21. ¹ H NMR of 3c
Fig S22. MALDI-MS of 3c
Fig S23. ¹ H NMR of L-3
Fig S24. ¹³ C NMR of L-3
Fig S25. HR-MALDI-MS of L-3
Fig S26. ¹ H NMR of Pt-3

Fig S27. ¹³ C NMR of Pt-3 S16
Fig S28. HR-MALDI-MS of Pt-3
Fig S29. ¹ H NMR of 3d
Fig S30. MALDI-MS of 3d
Fig S31. ¹ H NMR of L-4
Fig S32. ¹³ C NMR of L-4
Fig S33. HR-MALDI-MS of L-4
Fig S34. ¹ H NMR of Pt-4
Fig S35. ¹³ C NMR of Pt-4
Fig S36. HR-MALDI-MS of Pt-4
Fig S37. ¹ H NMR of 3e
Fig S38. ¹ H NMR of L-5
Fig S39. MALDI-MS of 3e
Fig S40. ¹³ C NMR of L-5
Fig S41. HR-MALDI-MS of L-5
Fig S42. ¹ H NMR of Pt-5
Fig S43. ¹³ C NMR of Pt-5
Fig S44. HR-MALDI-MS of Pt-5
Fig S45. ¹ H NMR of 3f
Fig S46. MALDI-MS of 3f
Fig S47. ¹ H NMR of L-6
Fig S48. ¹³ C NMR of L-6
Fig S49. HR-MALDI-MS of L-6
Fig S50. ¹ H NMR of Pt-6
Fig S51. ¹³ C NMR of Pt-6
Fig S52. HR-MALDI-MS of Pt-6
Fig S53. ¹ H NMR of R-5
Fig S54. ¹ H NMR of 5
Fig S55. ¹ H NMR of R-6
Fig S56. Phosphorescence emission spectra in different atmosphere of Pt-2, Pt-3, Pt-5 and Pt-6S26
Fig S57. Emission emission spectra of Pt-3-Pt-6 at 298K and 77 KS26
Fig S58. Nanosecond transient absorption difference spectra
Fig S59. The difference upconversion spectra of Pt-1, Pt-3, Pt-5 and Pt-6
Fig S60. Phosphorescence emission spectra of complex Pt-5 and Pt-6 with increasing DPA concentrationS28
Fig S61. upconvertion of Pt-2 and Pt-4 use fluorescence Instruments
Fig S62. The triplet lifetime of Pt-1 , Pt-2 , Pt-3 , Pt-4 , Pt-5 and Pt-6
Fig S63. The frontier molecular orbitals of complex Pt-1S29
Table S1. Selected vertical electronic excitation energies and corresponding oscillator strengths of the lowlying
electronically excited states of complex Pt-1S30
Fig S64. The frontier molecular orbitals of complex Pt-2S30
Table S2. Selected vertical electronic excitation energies and corresponding oscillator strengths of the lowlying
electronically excited states of complex Pt-2S31
Fig S65. The frontier molecular orbitals of complex Pt-3S31
Table S3. Selected vertical electronic excitation energies and corresponding oscillator strengths of the lowlying

electronically excited states of complex Pt-3S32
Fig S66. The frontier molecular orbitals of complex Pt-4
Table S4. Selected vertical electronic excitation energies and corresponding oscillator strengths of the lowlying
electronically excited states of complex Pt-4
Fig S67. The frontier molecular orbitals of complex Pt-5S35
Table S5. Selected vertical electronic excitation energies and corresponding oscillator strengths of the lowlying
electronically excited states of complex Pt-5 S36
Fig S68. The frontier molecular orbitals of complex Pt-6S37
Table S6. Selected vertical electronic excitation energies and corresponding oscillator strengths of the lowlying
electronically excited states of complex Pt-6
Fig S69. The triplet transient absorption difference spectra of ligands calculated by DFT S39
The coordinates of complex Pt-1
The coordinates of complex Pt-2
The coordinates of complex Pt-3
The coordinates of complex Pt-4
The coordinates of complex Pt-5
The coordinates of complex Pt-6

Experimental Section

General

All the chemicals are analytical pure and were used as received. Solvents were dried and distilled for synthesis. NMR spectra were recorded on a 400 MHz Varian Unity Inova NMR spectrophotometer. Mass spectra were recorded with Q-TOF Micro MS spectrometer. UV-Vis absorption spectra were measured with a HP8453 UV-visible spectrophotometer. Fluorescence spectra were recorded on JASCO FP-6500 or a Sanco 970 CRT spectrofluorometer. Fluorescence lifetimes were measured on a Horiba Jobin Yvon Fluoro Max-4 (TCSPC) instrument. Emission curves were generated using the Origin 5.0 (Microcal software). The binding constants were calculated using custom-written nonlinear least-square curve-fitting programs implemented within SigmaPlot 2000 (SPSS Inc.).

All these calculations were performed in Gaussian 09 suit.

Synthesis :

1-(2-(2-Ethynyl-9,9-dioctyl-9H-fluoren-7-yl)ethynyl)-naphthalene (3b)

3b was prepared with the similar method of **3a** and obtained as cream solid 320.0 mg, yield: 51.8 %.¹H NMR (400 MHz, CDCl₃) : δ 8.51 (d, 1H, *J* = 8.0 Hz), δ 7.90–7.85 (m, 2H), δ 7.81 (d, 1H, *J* = 8.0 Hz), δ 7.70 (d, 1H, *J* = 8.0 Hz), δ 7.65–7.62 (m, 2H), δ 7.58–7.54 (m, 3H), δ 7.50–7.46 (m, 3H), δ 2.01–1.95 (m, 4H), δ 1.25–1.07 (m, 20H), δ 0.83–0.79 (m, 6H), δ 0.63–0.62 (m, 4H). ESI-MS C₄₁H₄₇Br Calculated *m/z* = 618.2861, found *m/z* = 618.2859.

1-(7-Ethynyl-9,9-dioctyl-9H-fluoren-2-yl)-ethynylnaphthalene (L-2)

L-2 was prepared with the similar method of **L-1** and obtained as yellow solid 214.0 mg, yield: 75.9 %.¹H NMR (400 MHz, CDCl₃): δ 8.52 (d, 1H, *J* = 8.0 Hz), δ 7.88–7.83 (m, 2H), δ 7.81 (d, 1H, *J* = 8.0 Hz), δ 7.71 (d, 1H, *J* = 8.0 Hz), δ 7.66–7.63 (m, 3H), δ 7. 61 (s, 1H), δ 7.56 (t, 1H, *J* = 8.0 Hz), δ 7.49–7.45 (m, 3H), δ 3.16(s, 1H), δ 2.00–1.97 (m, 4H), δ 1.22–1.05 (m, 20H), δ 0.82–0.79 (m, 6H), δ 0.63–0.60 (m, 4H). ¹³C NMR(100MHz, CDCl₃), δ 151.3, 141.2, 140.7, 133.3, 131.3, 130.4, 128.8, 128.4, 126.8, 126.6, 126.5, 126.3, 126.0, 125.4, 122.3, 121.0, 120.7, 120.2, 120.0, 95.3, 88.0, 84.6, 55.3, 40.3, 31.8, 30.0, 29.3, 23.7, 22.6, 14.1. HR-MALDI-MS: C₄₃H₄₈ Calculated *m*/*z* = 564.3756, found *m*/*z* = 574.3724.

1-(2-(2-Ethynyl-9,9-dioctyl-9H-fluoren-7-yl)ethynyl)-anthracene (3c)

3c was prepared with the similar method of **3a** and obtained as yellow solid 300.0 mg, yield: 44.9 %. ¹H NMR (400 MHz, CDCl₃): δ 8.72 (d, 2H, *J* = 8.0 Hz), δ 8.46 (s, 1H), δ 8.05 (d, 2H, *J* = 8.0 Hz), δ 7.78–7.72 (m, 2H), δ 7.68–7.59 (m, 4H), δ 7.56–7.48 (m, 4H), δ 2.06–1.98 (m, 4H) , δ 1.20–1.09 (m, 20H), δ 0.83–0.78 (m, 6H), δ 0.69–0.63 (m, 4H). HR-MALDI-MS: C₄₅H₄₉Br Calculated *m*/*z* = 668.3018, found *m*/*z* = 668.3685.

1-(7-Ethynyl-9,9-dioctyl-9H-fluoren-2-yl)-ethynyl-anthracene (L-3)

L-3 was prepared with the similar method of L-1 and obtained as yellow solid 190.0 mg, yield: 69.0 %. ¹H NMR (400 MHz, CDCl₃): δ 8.73(d, 2H, *J* = 8.0 Hz), δ 8.46 (s, 1H), δ 8.06 (d, 2H, *J* = 12.0 Hz), δ 7.76 (s, 2H), δ 7.69–7.62 (m, 4H), δ 7.54–7.50 (m, 4H), δ 3.18 (s, 1H), δ 2.05–2.00 (m, 4H), δ 1.25–1.07 (m, 20H), δ 0.86–0.78 (m, 6H), δ 0.66–0.60 (m, 4H). ¹³C NMR(100MHz, CDCl₃): δ 151.54, 151.25, 141.38. 141.98, 132.8, 131.4, 131.1, 128.9, 127.9, 127.0, 126.8, 125.9, 120.4, 120.1, 117.6, 102.0, 87.0, 84.8, 55.5, 40.5, 39.6, 32.1, 29.9, 29.4, 23.9, 22.8, 14.3. HR-MALDI-MS: C₄₇H₅₀: Calculated *m*/*z* = 614.3913, found *m*/*z* = 614.3868.

1-(2-(2-Ethynyl-9,9-dioctyl-9H-fluoren-7-yl)ethynylpyrene (3d)

3d was prepared with the similar method of **3a** and obtained as yellow solid 400.0 mg, yield: 57.6 %.¹H NMR (400 MHz, CDCl₃): δ 8.72 (d, 1H, *J* = 8.0 Hz), δ 8.26 (s, 1H), δ 8.24–8.21 (m, 3H), δ 8.17 (d, 1H, *J* = 8.0 Hz), δ 8.08–8.04 (m, 2H), δ 7.72 (s, 2H), δ 7.66 (s, 1H), δ 7.60 (s, 1H), δ 7.49 (d, 2H, *J* = 4.0 Hz), δ 2.04–1.97 (m, 4H), δ 1.24–1.08 (m, 20H), δ 0.83–0.80 (m, 6H), δ 0.67–0.63 (m, 4H). HR-MALDI-MS: C₄₇H₄₉Br Calculated *m*/*z* = 692.3018, found *m*/*z* = 692.3815.

1-(7-Ethynyl-9,9-dioctyl-9H-fluoren-2-ylethynyl)pyrene (L-4)

L-4 was prepared with the similar method of L-1. Yellow solid 235.0 mg, yield:74.6 %.¹H NMR (400 MHz, CDCl₃): δ 8.77 (d, 1H, *J* = 8.0 Hz), δ 8.28–8.22 (m, 4H), δ 8.18 (d, 1H, *J* = 8.0 Hz), δ 8.14 (d, 1H, *J* = 8.0 Hz), δ 8.09–8.04 (m, 2H), δ 7.76 (s, 2H), δ 7.71 (d, 2H, *J* = 8.0 Hz), δ 7.55 (d, 2H, *J* = 8.0 Hz), δ 3.20 (s, 1H), δ 2.06–2.03 (m, 4H), δ 1.24–1.09 (m, 20H), δ 0.86–0.82 (m, 6H), δ 0.69–0.64 (m, 4H). ¹³C NMR(100MHz, CDCl₃): δ 151.5, 151.3, 141.4, 140.8, 132.0, 131.5, 131.3, 131.1, 129.8, 128.5, 128.3, 127.5, 126.7, 126.4, 126.1, 125.8, 125.8, 124.8, 124.7, 124.6, 122.6, 120.9, 120.4, 120.1, 118.1, 96.3, 89.3, 84.8, 55.5, 40.5, 32.0, 30.2, 29.9, 29.4, 23.9, 22.8, 14.3. HR-MALDI-MS: C₄₉H₅₀ Calculated *m*/*z* = 638.3913, found *m*/*z* = 638.3969.

1-(2-(2-Ethynyl-9,9-dioctyl-9H-fluoren-7-yl)ethynyl)-triphenylamine (3e)

3e was prepared with the similar method of **3a** and obtained green yellow oily 190.0 mg, yield: 51.7 %. ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, 1H, *J* = 8.0 Hz), δ 7.52 (d, 1H, *J* = 8.0 Hz), δ 7.49–7.44 (m, 4H), δ 7.41 (d, 2H, *J* = 8.0 Hz), δ

7.30–7.25 (m, 4H), δ 7.13 (d, 4H, *J* = 8.0 Hz), δ 7.08 (t, 2H, J = 8.0 Hz), δ 7.03 (d, 2H, *J* = 8.0 Hz), δ 1.94–1.92 (m, 4H), δ 1.22–1.05 (m, 20H), δ 0.84–0.80 (m, 6H), δ 0.62–0.59 (m, 4H). HR-MALDI-MS: C₄₉H₅₄NBr Calculated *m*/*z* = 735.3440, found *m*/*z* = 735.4805.

1-(7-Ethynyl-9,9-dioctyl-9H-fluoren-2-yl)ethynyl-triphenylamine (L-5)

L-5 was prepared with the similar method of L-1 and obtained yellow oil 130.0 mg, yield: 82.3 %. ¹H NMR (400 MHz, CDCl₃): δ 7.63 (t, 2H, *J* = 8.0 Hz), δ 7.48–7.44 (m, 4H), δ 7.39 (d, 2H, *J* = 8.0 Hz), δ 7.28–7.23 (m, 4H), δ 7.11–7.09 (d, 4H, *J* = 8.0 Hz), δ 7.06–6.99 (m, 4H), δ 3.12 (s, 1H), δ 1.95–1.91 (m, 4H), δ 1.08–1.02 (m, 20H), δ 0.85–0.78 (m, 6H), δ 0.60–0.55 (m, 4H). ¹³C NMR (100MHz, CDCl₃): δ 151.3, 121.2, 148.1, 147.4, 141.4, 140.3, 132.7, 131.4, 130.8, 129.6, 126.7, 126.0, 89.8, 84.8, 55.4, 40.5, 39.6, 32.1, 32.0, 30.2, 29.9, 29.6, 29.4, 23.9, 22.8, 14.3. HR-MALDI-MS: C₅₁H₅₅N Calculated *m*/*z* = 681.4335, found *m*/*z* = 681.4288.

1-(2-(2-Ethynyl-9,9-dioctyl-9H-fluoren-7-yl)ethynyl)-9,9-dioctylfluorene(3f)

3f was prepared with the similar method of 3a and obtained as yellow solid 215.0 mg, yield: 48.86 %. ¹H NMR (400 MHz, CDCl₃): δ 7.70–7.64 (m, 3H), δ 7.56–7.52 (m, 5H), δ 7.47 (s, 2H), δ 7.33 (s, 3H), δ 1.99–1.95 (m, 8H), δ 1.21–1.03 (m, 40H), δ 0.84–0.80 (m, 12H), δ 0.62–0.59 (m, 8H). HR–MALDI–MS: C₆₀H₈₁Br Calculated *m*/*z* = 880.5522, found *m*/*z* = 880.7422.

1-(7-Ethynyl-9,9-dioctyl-9H-fluoren-2-ylethynyl)-9,9-dioctyl-fluoren (L-6)

L-6 was prepared with the similar method of **L-1** and obtained as yellow solid 95.4 mg, yield: 70.7 %. 1H NMR (400 MHz, CDCl₃): δ 7.71–7.69(m, 2H), δ 7.68(d, 1H, *J* = 8.0 Hz), δ 7.65(d, 1H, *J* = 8.0 Hz), δ 7.57–7.53 (m, 4H), δ 7.50–7.47 (m, 2H), δ 7.35–7.33 (m, 3H), δ 3.15 (s, 1H), δ 2.00–1.95 (m, 8H), δ 1.14–1.05 (m, 40H), δ 0.84–0.80 (m, 12H), δ 0.61–0.58 (m, 8H). ¹³C NMR (100 MHz, CDCl₃): δ 151.1, 151.0, 150.8, 141.5, 141.3, 140.4, 131.3, 130.7, 130.6, 127.5, 126.9, 126.5, 125.9, 122.9, 122.3, 121.4, 120.6, 120.1, 120.0, 119.9, 119.7, 91.0, 90.3, 84.8, 55.3, 55.2, 40.4, 40.4, 32.8, 32.0, 31.8, 30.1, 29.7, 29.4, 29.3, 23.7, 22.6, 14.1. HR-MALDI-MS: C₆₂H₈₂ Calculated *m/z* = 826.6417, found *m/z* = 826.6438.

Naphthalene-acetylene (compound R-2)

Under argon atmosphere, 1-bromonaphthalene(1.0 g, 4.83 mmol), $Pd(PPh_3)_2Cl_2$ (67.6 mg, 0.09 mmol), triphenylphosphine (50.6 mg, 0.201 mmol), cuprous iodide (36.7 mg, 0.18 mmol) and dry triethylamine (10 mL) were mixed together, The mixture was purged with Ar and then the trimethylsilyl acetylene was added. The mixture was stirred and refluxed for about 8 h. The reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. The product was purified by column chromatography (silica gel, hexane) obtained canary oily 0.57 g, yield 77.0 %. Then **P-2**, K₂CO₃ (1.05 g, 7.61 mmol), methanol (15 mL) was mixed together. The mixture was stirred at room temperature for 3h. The product R-2 of was obtained canary oily 379.0 mg, yield: 96.0 %. (*J. Mater. Chem.*, 2010, **20**, 9775–9786).

9-ethynylanthracene (compound R-3)

R-3 was prepared with the similar method of **R-2**. **P-3** was obtained as yellow oily 620.0 mg, yield: 59.0 %. **R-3** was obtained as yellow solid 380.0 mg, yield: 77.4 %. (*J.* Am. Chem. Soc. 2010, **132**, 2646–2654).

Pyrene alkyne (compound R-4)

R-4 was prepared with the similar method of **R-2**. **P-4** was obtained as yellow oily 730.0 mg, yield: 68.9 %. R-4 was obtained as yellow solid 440.0 mg, yield: 79.3 %.(*Organic Electronics*, 2009, **10**, 256–265.)

4-ethynyl-N,N-diphenylaniline (compound R-5)

R-5 was prepared with the similar method of R-2. R-5 was obtained as yellow solid 210.0 mg, yield: 85.9%.¹H NMR (400

MHz, CDCl₃): δ 7.34(d, 2H, *J* = 8.0 Hz), δ 7.29–7.25 (m, 4H), δ 7.11–7.08(m, 6H), δ 6.98(d, 2H, *J* = 8.0 Hz), δ (s, 2H).

2-Iodofluorene (compound 5)

Fluorene (0.850 g, 5 mmol) was dissolved in acetic acid (10 mL) at 40 °C in a 100 mL flask. To this solution, I₂ (5.040 g, 2.0 mmol), H₂SO₄ (0.5 mL, 9.5 mmol), and a solution of iodic acid (0.300 g, 1.5mmol) in water (1 mL) were added. The mixture was heated to 70 °C for 1 h. At the end of this period, the solution was cooled to room temperature and poured into water (100 mL). The resulting precipitate was collected by vacuum filtration, washed with a solution of 2% NaHCO₃ (aq), water, and dried under reduced pressure. The crude product was re-crystallized from methanol, and dried under vacuum to obtain a white solid 1.15 g, yield: 78.0 %.¹H NMR (400 MHz, CDCl₃): δ 7.89 (s, 1H), δ 7.77 (d, 1H, *J* = 8.0 Hz), δ 7.71 (d,

1H, J = 8.0 Hz), δ 7.54 (d, 2H, J = 8.0 Hz), δ 7.40-7.31 (m, 2H), δ 3.87 (s, 2H). (Chem. Mater. 2010, 22, 3472-3481)

9,9-dioctyl-2-Iodofluorene (compound 6)

Compound **6** was prepared with the similar method compound **2** obtained white solid 560.0 mg, yield: 29.5%. (*Polym. Adv. Technol.* 2004; **15**: 266–269)

9,9-dioctyl-9H-fluorene-2-acetylene (compound R-6)

R-6 was prepared with the similar method of R-2. P-6 was obtained as yellow oily 380 mg, yield: 78.2 %. R-6 was obtained as yellow solid 180.0 mg, yield: 65.0 %.¹H NMR (400 MHz, CDCl₃): δ 7.34 (d, 2H, *J* = 8.0 Hz), δ 7.69–7.68 (m, 1H), δ 7.65 (d, 1H, *J* = 8.0 Hz), δ 7.48 (d, 2H, *J* = 8.0 Hz), δ 7.48 (d, 2H, *J* = 8.0 Hz), δ 7.48 (s, 3H), δ 3.13(s, 1H), δ 1.96–1.92 (m, 4H), δ 1.21–1.03 (m, 20H), δ 0.83–0.80 (m, 6H), δ 0.59–0.53 (m, 4H).

Fig. S1 ¹H NMR of compound 1 (400 MHz, CDCl₃).

Fig. S2 ESI-HRMS compound 1.

Fig. S3 ¹H NMR of compound 2 (400 MHz, CDCl₃).

Fig. S4 ESI-MS compound 2.

Fig. S5 ¹H NMR of compound 3a (400 MHz, CDCl₃).

Fig. S6 ESI-MS compound 3a.

Fig. S7 ¹H NMR of compound L-1 (400 MHz, CDCl₃).

Fig. S8 ¹³C NMR of compound **L-1** (100 MHz ,CDCl₃).

Fig. S9 HR-MALDI-MS of L-1.

Fig. S10 ¹H NMR of compound **Pt-1** (CDCl₃, 400 MHz).

Fig. S11 ¹³C NMR of compound **Pt-1** (100 MHz, CDCl₃).

Fig. S12 HR-MALDI-MS of Pt-1.

Fig. S13 ¹H NMR of compound 3b (400 MHz, CDCl₃).

Fig. S14 ESI-HRMS compound 3b.

Fig. S15¹H NMR of compound L-2 (400 MHz, CDCl₃).

Fig. S16 ¹³C NMR of compound **L-2** (100 MHz, CDCl₃).

Fig. S17 HR-MALDI-MS of L-2.

Fig. S18 ¹H NMR of compound Pt-2 (400 MHz, CDCl₃).

Fig. S19¹³C NMR of compound Pt-2 (100 MHz, CDCl₃).

Fig. S20 HR-MALDI-MS of Pt-2.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2012

Fig. S21 ¹H NMR of compound **3c** (400 MHz, CDCl₃).

Fig. S23 ¹H NMR of compound L-3 (400 MHz, CDCl₃).

Fig. S24 ¹³C NMR of compound L-3 (100 MHz, CDCl₃).

Fig. S25 HR-MALDI-MS of L-3.

Fig. S26 ¹H NMR of compound Pt-3 (400 MHz, CDCl₃).

Fig. S27¹³C NMR of compound Pt-3 (100 MHz, CDCl₃).

Fig. S28 HR-MALDI-MS of Pt-3.

Fig. S29 ¹H NMR of compound 3d (400 MHz, CDCl₃).

Fig. S30 MALDI-MS compound 3d.

Fig. S31 ¹H NMR of compound L-4 (400 MHz, CDCl₃).

Fig. S32 ¹³C NMR of compound L-4 (100 MHz, CDCl₃).

Fig. S33 HR-MALDI-MS of L-4.

Fig. S34 ¹H NMR of compound **Pt-4** (400 MHz, CDCl₃).

Fig. S35 ¹³C NMR of compound **Pt-4** (100 MHz, CDCl₃).

Fig. S36 HR-MALDI-MS of Pt-4.

Fig. S37 ¹H NMR of compound 3e (400 MHz, CDCl₃).

Fig. S38 MALDI-MS of 3e.

Fig. S39 ¹H NMR of compound L-5 (400 MHz,CDCl₃).

Fig. S41 HR-MALDI-MS of L-5.

Fig. S42 ¹H NMR of compound Pt-5 (400 MHz, CDCl₃).

Fig. S43 ¹³C NMR of compound Pt-5 (100 MHz, CDCl₃).

Fig. S44 HR-MALDI-MS of Pt-5.

Fig. S45 1 H NMR of compound **3f** (400 MHz, CDCl₃).

Fig. S46 MALDI-MS of 3f.

Fig. S47 ¹H NMR of compound L-6 (400 MHz, CDCl₃).

Fig. S48 ¹³C NMR of compound **L-6** (100 MHz, CDCl₃).

Fig. S49 HR-MALDI-MS of L-6.

Fig. S50 ¹H NMR of compound Pt-6 (400 MHz, CDCl₃).

Fig. S51 ¹³C NMR of compound Pt-6 (100 MHz, CDCl₃).

Fig. S52 HR-MALDI-MS of Pt-6.

Fig. S53 ¹H NMR of compound R-5 (400 MHz, CDCl₃).

Fig. S54 ¹H NMR of compound **5** (400 MHz, CDCl₃).

Fig. S55 ¹H NMR of compound **R-6** (400 MHz, CDCl₃).

Fig. S56 Emission spectra of (a) **Pt-2** ($\lambda_{ex} = 390 \text{ nm}$), (b) **Pt-3** ($\lambda_{ex} = 445 \text{ nm}$), (c) **Pt-5** ($\lambda_{ex} = 390 \text{ nm}$) and (d) **Pt-6** ($\lambda_{ex} = 390 \text{ nm}$) ($c = 1.0 \times 10^{-5} \text{ M}$) under different atmosphere in toluene at 298 K.

Fig. S57 The normalization of emission emission spectra of (a) **Pt-3** (λ ex = 445 nm; (b) **Pt-4**, λ _{ex} = 420 nm; (c) **Pt-5** (λ ex = 390 nm) and (d) **Pt-6** (λ _{ex} = 390 nm) in EtOH : MeOH = 4:1 v/v at 298 K and 77 K.

Fig. S58 Nanosecond transient absorption difference spectra of (a) **Pt-1**, (b) **Pt-2**, (c) **Pt-5** and (d) **Pt-6** ($c = 1.0 \times 10^{-5}$ M) intoluene measured as a function of the delay times indicated following 355 nm pulsed-laser excitation at 25°C.

Fig. S59 The difference upconversion spectra of (a) **Pt-1**, (b) **Pt-3**, (c) **Pt-5** and (d) **Pt-6** ($c = 1.0 \times 10^{-5}$ M) with added differt DPA with 445 nm laser excitation in toluenen at 25°C.

Fig. S60 Phosphorescence emission spectra of complex (a) **Pt-5** (λ ex = 390 nm) and (b) **Pt-6** (λ ex = 390 nm) with increasing DPA concentration in toluene ($c = 1.0 \times 10^{-5}$ M).

Fig. S61 Upconverted of (a) **Pt-2** and (b) **Pt-4** $(1.0 \times 10^{-5} \text{M})$ and residual phosphorescence of mixtures of **DPA** $(4.3 \times 10^{-5} \text{M})$ use fluorescence Instruments 445 nm in toluene at 298 K. Note the upconversions were carried out with the spectrofluorometer as the excitation source.

Fig. S62 The triplet lifetime of **Pt-1**(λ ex = 450 nm), **Pt-2** (λ ex = 500 nm), **Pt-3** (λ ex = 600 nm), **Pt-4** (λ ex = 600 nm), **Pt-5** (λ ex = 450 nm) and **Pt-6** (λ ex = 450 nm) in toluene measured as a function of the delay times indicated following 355 nm pulsed-laser excitation at 25°C.

Fig. S63 Selected frontier molecular orbitals of Pt-1 without solvent. Calculated by DFT at the B3LYP/6-31G((d)/LanL2DZ level. The alkyl groups were simplified in the calculation to reduce computation time. Calculated with Gaussian 09W.

	Electronic transition					
_		Energy ^a	f ^b	Composition ^c	CI ^d	Character
Singlet	$S_0 \rightarrow S_1$	1.69 eV 732 nm	0.1029	HOMO→LUMO	0.6965	LLCT/MLCT
	$S_0 \rightarrow S_9$	2.86 eV 433 nm	0.3252	HOMO−4→LUMO	0.2666	MLCT/LLCT
				HOMO−1→LUMO+1	0.4425	LLCT/MLCT
				HOMO→LUMO+2	0.4654	LLCT/MLCT
	$S_0 \rightarrow S_{12}$	3.140 eV 394 nm	1.4659	HOMO−1→LUMO+4	0.1420	ILCT/MLCT
				HOMO→LUMO+3	0.6802	ILCT
	$S_0 \rightarrow S_{15}$	3.39eV 366 nm	0.6048	HOMO−2→LUMO+2	0.1267	ILCT/MLCT
				HOMO−1→LUMO+3	0.5568	ILCT/MLCT
				HOMO−1→LUMO+4	0.3683	MLCT
Triplet	$S_0 \rightarrow T_1$	1.60eV 775 nm	0.0000 ^e	HOMO→LUMO	0.6861	LLCT/MLCT
	$S_0 \rightarrow T_3$	2.28ev 542nm	0.0000 ^e	HOMO−3→LUMO	0.3376	MLCT/LLCT
				HOMO−2→LUMO	0.6025	MLCT/LLCT

Table S1. Selected vertical electronic excitation energies (ev) and corresponding oscillator strengths (f), main configurations and ci coefficients of the lowlying electronically excited states of complex **Pt-1** without solvent, calculated byTDDFT//B3LYP/6-31G(d)/LanL2DZ, based on the optimized ground state geometries.

a Only the selected low-lying excited states are presented. b Oscillator strength. c Only the main configurations are presented. d The Cl coefficients are in absolute values. e No spin-orbital coupling effect was considered, thus the f values are zero.

Fig. S64 Selected frontier molecular orbitals of complex **Pt-2** without solvent, calculated by DFT at the B3LYP/6-31G((d)/LanL2DZ level. The octyl group was simplified as methy in the calculation to reduce computation time. Calculated with Gaussian 09W.

	Electronic transition			TDDFT//B3LYP/6-31G		
		Energy ^[a]	f ^[b]	Compositi ^[c]	CI ^[d]	Character
Singlet	$S_0 \rightarrow S_1$	1.69 eV 733 nm	0.1381	HOMO-2→LUMO	0.1096	ILCT LLCT MLCT
				HOMO→LUMO	0.6946	ILCT MLCT
	$S_0 \rightarrow S_{10}$	2.92 eV 424 nm	1.6158	HOMO−1→LUMO+2	0.4228	ILCT LLCT MLCT
				HOMO→LUMO+3	0.5442	LLCT MLCT
	$S_0 \rightarrow S_{15}$	3.18 eV 389 nm	0.3752	HOMO−1→LUMO+2	0.2379	LLCT MLCT
				HOMO−1→LUMO+4	0.6361	ILCT LLCT MLCT
				HOMO→LUMO+3	0.1654	ILCT LLCT MLCT
	$S_0 \rightarrow S_{24}$	3.65 eV 339nm	0.6458	HOMO−3→LUMO+2	0.3477	LLCT MLCT
				HOMO−3→LUMO+4	0.1371	LLCT MLCT
				HOMO-2→LUMO+3	0.2830	LLCT MLCT
				HOMO-1→LUMO+6	0.1253	ILCT LLCT MLCT
				$HOMO \rightarrow LUMO+5$	0.4967	ILCT MLCT
Triplet	$S_0 \rightarrow T_1$	1.59eV 780 nm	0.000 ^e	HOMO-2→LUMO	0.1348	LLCT MLCT
				HOMO→LUMO	0.6830	ILCT LLCT MLCT
	$S_0 \rightarrow T_3$	2.17 eV 571nm	0.000 ^e	HOMO-3→LUMO+2	0.1209	ILCT LLCT MLCT
				HOMO-3→LUMO+4	0.2025	ILCT MLCT
				HOMO-2→LUMO+3	0.2564	ILCT MLCT
				HOMO-1→LUMO+2	0.2224	LLCT MLCT
				HOMO-1→LUMO+4	0.2984	ILCT MLCT
				HOMO→LUMO+1	0.1582	LLCT MLCT
				HOMO→LUMO+3	0.3774	ILCT MLCT

Table S2 Selected vertical electronic excitation energies (ev) and corresponding oscillator strengths (f), mainconfigurations and ci coefficients of the lowlying electronically excited states of complex Pt-2 without solvent, calculated byTDDFT//B3LYP/6-31G(d)/LanL2DZ, based on the optimized ground state geometries.

a :Only the selected low-lying excited states are presented. b: Oscillator strength. c :Only the mainconfigurations are presented. d: The CI coefficients are in absolute values. e:No spin-orbital coupling effect wasconsidered, thus the f values are zero.

Fig. S65 Selected frontier molecular orbitals of Pt-3 without solvent calculated by DFT at the B3LYP/6-31G((d)/LanL2DZ level. The alkyl groups were simplified in the calculation to reduce computation time. Calculated with Gaussian 09W.

	Electronic			TDDFT//B3LYP/6—31G(d)		
	transition	Energy ^[a]	<i>f</i> ^[b]	Composition ^[c]	CI ^[d]	Character
Singlet	$S_0 \rightarrow S_1$	1.67 eV 740 nm	0.1406	HOMO−2→LUMO	0.1843	ILCT MLCT LLCT
				HOMO→LUMO	0.6780	ILCT MLCT LLCT
	$S_0 \rightarrow S_6$	2.52 eV 490 nm	1.1400	HOMO−1→LUMO+2	0.2086	ILCT MLCT
				HOMO→LUMO+1	0.6190	ILCT MLCT
				HOMO→LUMO+3	0.2415	ILCT LLCT MLCT
	$S_0 \rightarrow S_{11}$	2.72 eV 456 nm	0.2500	HOMO−7→LUMO	0.1116	MLCT
				HOMO−1→LUMO+2	0.6407	ILCT MLCT
				HOMO→LUMO+1	0.2516	ILCT MLCT
	$S_0 \rightarrow S_{16}$	3.06 eV 405 nm	0.1397	HOMO−3→LUMO+2	0.2750	ILCT MLCT
				HOMO−2→LUMO+1	0.6337	MLCT
	$S_0 \rightarrow S_{27}$	3.44ev 360nm	0.6765	HOMO−3→LUMO+2	0.1245	ILCT MLCT
				HOMO−1→LUMO+6	0.1784	ILCT
				HOMO→LUMO+5	0.6472	ILCT MLCT
Triplet	$S_0 \rightarrow T_1$	1.54eV 805 nm	0.0000 ^e	HOMO−3→LUMO+2	0.2295	ILCT MLCT
				HOMO−2→LUMO+1	0.2893	ILCT MLCT
				HOMO−1→LUMO+2	0.3646	ILCT MLCT
				HOMO→LUMO	0.3176	LLCT MLCT
				HOMO→LUMO+1	0.3205	ILCT MLCT
	$S_0 \rightarrow T_3$	1.60ev 775nm	0.0000 ^e	HOMO−3→LUMO+2	0.1302	ILCT MLCT
				HOMO−2→LUMO	0.2197	LLCT MLCT
				HOMO−2→LUMO+1	0.1549	ILCT MLCT
				HOMO−1→LUMO+2	0.1793	ILCT MLCT
				HOMO→LUMO	0.5784	LLCT MLCT
				HOMO→LUMO+1	0.1608	ILCT MLCT

Table S3. Selected vertical electronic excitation energies (ev) and corresponding oscillator strengths (f), main configurations and ci coefficients of the lowlying electronically excited states of complex **Pt-3** without solvent, calculated by TDDFT//B3LYP/6-31G(d)/LanL2DZ, based on the optimized ground state geometries.

a :Only the selected low-lying excited states are presented. b: Oscillator strength. c :Only the mainconfigurations are presented. d: The CI coefficients are in absolute values. e:No spin-orbital coupling effect wasconsidered, thus the f values are zero.

Fig. S66 Selected frontier molecular orbitals of complex **Pt-4** without solvent calculated by DFT at the B3LYP/6-31G((d)/LanL2DZ level. The octyl group was simplified as methy in the calculation to reduce computation time. Calculated with Gaussian 09W.

	Electronic			TDDFT//B3LYP/6-31G(d)	
	transition	Energy ^[a]	$m{f}^{[b]}$	Composition ^[c]	CI ^[d]	Character
Singlet	$S_0 \rightarrow S_1$	1.69eV 733 nm	0.1516	HOMO-2→LUMO	0.1533	ILCT MLCT
				HOMO→LUMO	0.6848	LLCT MLCT
	$S_0 \rightarrow S_7$	2.69 eV 461 nm	1.1049	HOMO−1→LUMO+2	0.2226	ILCT LLCT MLCT
				HOMO→LUMO+1	0.4883	ILCT MLCT
				HOMO→LUMO+3	0.4215	LLCT MLCT
	$S_0 \rightarrow S_{12}$	2.85 eV 434 nm	0.3744	HOMO−1→LUMO+2	0.6330	ILCT LLCT MLCT
				HOMO−1→LUMO+4	0.1245	LLCT MLCT
				HOMO→LUMO+1	0.2296	ILCT MLCT
				HOMO \rightarrow LUMO+3	0.1110	LLCT MLCT
	$S_0 \rightarrow S_{18}$	3.25 eV 380 nm	0.4136	HOMO−3→LUMO+2	0.1802	ILCT MLCT
				HOMO−2→LUMO+1	0.5972	ILCT MLCT
				HOMO-2→LUMO+3	0.1763	LLCT MLCT
				HOMO-1→LUMO+6	0.1179	ILCT MLCT
				$HOMO \rightarrow LUMO+5$	0.1876	ILCT MLCT
	$S_0 \rightarrow S_{26}$	3.50 eV 355nm	0.1190	HOMO-12 \rightarrow LUMO	0.1027	LLCT MLCT
				HOMO-11 \rightarrow LUMO	0.1009	LLCT MLCT
				HOMO-4→LUMO+4	0.1922	MLCT
				HOMO-3→LUMO+2	0.1748	ILCT MLCT
				HOMO-3→LUMO+4	0.3079	LLCT MLCT
				HOMO-2→LUMO+4	0.2997	LLCT MLCT
				HOMO →LUMO+5	0.3786	ILCT MLCT
Triplet	$S_0 \rightarrow T_1$	1.60eV 776 nm	0.0000 ^e	HOMO-2→LUMO	0.1817	ILCT MLCT
				HOMO→LUMO	0.6677	LLCT MLCT
	$S_0 \rightarrow T_3$	1.86 eV 666nm	0.0000 ^e	HOMO-3→LUMO+1	0.1166	ILCT MLCT
				HOMO-3→LUMO+2	0.2308	ILCT MLCT
				HOMO-2→LUMO+1	0.3081	ILCT MLCT
				HOMO-2→LUMO+2	0.1261	ILCT MLCT
				HOMO-1→LUMO+1	0.1685	ILCT MLCT
				HOMO-1→LUMO+2	0.3153	ILCT LLCT MLCT
				HOMO→LUMO+1	0.3311	ILCT MLCT
				HOMO→LUMO+2	0.1280	ILCT MLCT

Table S4. Selected vertical electronic excitation energies (ev) and corresponding oscillator strengths (f), mainconfigurations and ci coefficients of the lowlying electronically excited states of complex Pt-4 without solvent, calculated byTDDFT//B3LYP/6-31G(d)/LanL2DZ, based on the optimized ground state geometries.

a :Only the selected low-lying excited states are presented. b: Oscillator strength. c :Only the mainconfigurations are presented. d: The CI coefficients are in absolute values. e:No spin-orbital coupling effect wasconsidered, thus the f values are zero.

.

Fig. S67 Selected frontier molecular orbitals of complex **Pt-5** without solvent calculated by DFT at the B3LYP/6-31G((d)/LanL2DZ level. The octyl group was simplified as methy in the calculation to reduce computation time. Calculated with Gaussian 09W.

	Electronic	TDDFT//B3LYP/6-31G(d)					
	transition	Energy ^[a]	f ^[b]	Composition ^[c]	CI ^[d]	Character	
Singlet	$S_0 \rightarrow S_1$	1.65 eV 753nm	0.1257	HOMO-2→LUMO	0.2116	ILCT LLC MLCT	
				HOMO→LUMO	0.6689	LLCT MLCT	
	$S_0 \rightarrow S_9$	2.76 eV 449nm	0.1186	HOMO−7→LUMO	0.1566	ILCT LLCT MLCT	
				HOMO−5→LUMO	0.2031	ILCT LLCT MLCT	
				HOMO−3→LUMO+1	0.1262	ILCT LLCT MLCT	
				HOMO−2→LUMO+2	0.1319	LLCT MLCT	
				HOMO−1→LUMO+1	0.4160	ILCT LLCT MLCT	
				HOMO→LUMO+2	0.4597	ILCT LLCT MLCT	
	$S_0 \rightarrow S_{13}$	3.02 eV 411 nm	2.5341	HOMO-1→LUMO+2	0.1315	ILCT LLCT MLCT	
				HOMO-1→LUMO+4	0.2918	ILCT	
				HOMO→LUMO+3	0.6155	ILCT MLCT	
	$S_0 \rightarrow S_{17}$	3.17 eV 391 nm	0.4224	HOMO−6→LUMO	0.1154	ILCT LLCT MLCT	
				HOMO−5→LUMO	0.1623	ILCT LLCT MLCT	
				HOMO-3→LUMO+1	0.3536	ILCT LLCT MLCT	
				HOMO-1→LUMO+1	0.1007	ILCT LLCT MLCT	
				HOMO-1→LUMO+3	0.2716	ILCT MLCT	
				HOMO→LUMO+4	0.4520	ILCT	
Triplet	$S_0 \rightarrow T_1$	1.56eV 793 nm	0.0000e	$HOMO-2 \rightarrow LUMO$	0.2479	ILCT LLCT MLCT	
				HOMO→LUMO	0.6480	ILCT LLCT MLCT	
	$S_0 \rightarrow T_3$	2.17ev 272nm	0.0000 ^e	HOMO-4→LUMO	0.1736	LLCT MLCT	
				HOMO-2→LUMO	0.6158	ILCT LLCT MLCT	
				HOMO→LUMO	0.2591	ILCT LLCT MLCT	

Table S5. Selected vertical electronic excitation energies (ev) and corresponding oscillator strengths (f), mainconfigurations and ci coefficients of the lowlying electronically excited states of complex Pt-5 without solvent, calculated byTDDFT//B3LYP/6-31G(d)/LanL2DZ, based on the optimized ground state geometries.

a :Only the selected low-lying excited states are presented. b: Oscillator strength. c :Only the mainconfigurations are presented. d:

The CI coefficients are in absolute values. e:No spin-orbital coupling effect wasconsidered, thus the f values are zero.

Fig. S68 Selected frontier molecular orbitals of complex **Pt-6** without solvent calculated by DFT at the B3LYP/6-31G((d)/LanL2DZ level. The octyl group was simplified as methy in the calculation to reduce computation time. Calculated with Gaussian 09W.

	Electronic	lectronic TDDFT//B	TDDFT//B3LYP/6-31G(P/6-31G(d)		
	transition	Energy ^[a]	$m{f}^{[b]}$	Composition ^[c]	CI ^[d]	Character
Singlet	$S_0 \rightarrow S_1$	1.63ev 761nm	0.0660	HOMO−2→ LUMO	0.1174	LLCT MLCT
				$HOMO \rightarrow LUMO$	0.6934	LLCT MLCT
	$S_0 \rightarrow S_9$	2.85ev 435nm	0.6493	HOMO−1→LUMO+1	0.4753	LLCT MLCT
				HOMO→LUMO+2	0.4921	LLCT MLCT
	$S_0 \rightarrow S_{14}$	3.22ev 385nm	1.0681	HOMO−8→LUMO	0.1442	ILCT LLCT MLCT
				HOMO−1→LUMO+3	0.6356	ILCT MLCT
				HOMO−1→LUMO+4	0.2297	ILCT MLCT
	$S_0 \rightarrow S_{30}$	3.79 ev 327nm	1.1191	HOMO−14→LUMO+3	0.1304	ILCT MLCT
				HOMO−3→LUMO+3	0.3515	MLCT
				HOMO−2→LUMO+4	0.5007	ILCT MLCT
				HOMO−1→LUMO+5	0.1785	ILCT
				HOMO→LUMO+6	0.2027	ILCT MLCT
Triplet	$S_0 \rightarrow T_1$	1.53 eV 811nm	0.0000 ^e	$HOMO-2 \rightarrow LUMO$	0.1463	ILCT MLCT
				HOMO→LUMO	0.6817	LLCT MLCT
	$S_0 \rightarrow T_3$	2.27 eV 547nm	0.0000 ^e	HOMO-3→LUMO+4	0.1442	ILCT MLCT
				HOMO-2→LUMO	0.1169	ILCT LLCT MLCT
				HOMO-2→LUMO+3	0.1779	ILCT MLCT
				HOMO-1→LUMO+2	0.1425	LLCT MLCT
				HOMO-1→LUMO+3	0.1018	ILCT MLCT
				HOMO-1→LUMO+4	0.3363	ILCT MLCT
				HOMO-1→LUMO+6	0.1050	ILCT
				HOMO→LUMO+1	0.1850	LLCT MLCT
				HOMO→LUMO+3	0.4137	ILCT MLCT
				HOMO→LUMO+5	0.1245	ILCT

Table S6. Selected vertical electronic excitation energies (ev) and corresponding oscillator strengths (f), mainconfigurations and ci coefficients of the lowlying electronically excited states of complex **Pt-6** without solvent, calculated byTDDFT//B3LYP/6-31G(d)/LanL2DZ, based on the optimized ground state geometries.

a :Only the selected low-lying excited states are presented. b: Oscillator strength. c :Only the mainconfigurations are presented. d:

The CI coefficients are in absolute values. e:No spin-orbital coupling effect wasconsidered, thus the f values are zero.

Fig. S69 The calculated transient absorption spectra of the ligands T_1 state, please note that the information of bleaching is not included in the calculated transient absorption spectra). Calculated at B3LYP/6-31G(d) level with Gaussian 09W.

The coordinates of the singlet optimized geometries of complexes:

complex Pt-1 (DFT//B3LYP/6-31G(d)/LanL2DZ)

Symbolic Z-matrix: Charge = 0 Multiplicity = 1

С	3.48222400	5.28676400	-0.22536000
С	2.92064500	6.57086200	-0.17058800
С	1.52306400	6.64685700	-0.08136000
С	0.73963900	5.49649600	-0.04566700
С	2.66652800	4.16278700	-0.19046700
С	-0.73134500	5.49818800	0.05008700
С	-1.50987900	6.65019300	0.12275400
С	-2.90782900	6.57737100	0.20796100
С	-3.47504700	5.29463200	0.21950300
С	-2.66413200	4.16891100	0.14829300
Н	4.55071400	5.14765800	-0.29633300
Н	3.05795600	3.15509000	-0.23322000
Н	-4.54424200	5.15806600	0.28433400
Н	-3.05966200	3.16197600	0.15657700

Ν	-1.31688700	4.25927600	0.06386600
Ν	1.31963400	4.25611300	-0.10081800
Pt	-0.00210200	2.62944400	-0.04459700
С	-1.37775000	1.23480800	0.01928400
С	-2.26634500	0.39285500	0.06757400
С	1.37029800	1.23393800	-0.15466900
С	2.26155100	0.39709700	-0.23186400
Н	-1.02306400	7.61487400	0.11342000
Н	1.04029000	7.61272800	-0.04011200
С	-3.74301500	7.86502900	0.28954400
С	3.76102600	7.85708900	-0.21207600
С	-3.34738600	8.64048600	1.57610100
Н	-2.28644000	8.91090600	1.56647200
Н	-3.93684000	9.56169000	1.64349600
Н	-3.54347100	8.03214200	2.46513500
С	-3.45451800	8.74045200	-0.96048700
Н	-4.04358100	9.66270200	-0.90440000
Н	-2.39613100	9.01409600	-1.02072200
Н	-3.72833300	8.20431500	-1.87513600
С	-5.25992900	7.56966000	0.34015200
Н	-5.59108200	7.03495700	-0.55700300
Н	-5.52329900	6.98141000	1.22611000
Н	-5.80448900	8.51836400	0.38992300
С	3.37132000	8.67063000	-1.47669900
Н	2.31080700	8.94249000	-1.46262500
Н	3.96273200	9.59224800	-1.51569100
Н	3.56916300	8.08781800	-2.38230700
С	3.47294600	8.69680500	1.06221600
Н	4.06784000	9.61661500	1.03586000
Н	2.41609300	8.97531900	1.12668600
Н	3.73984400	8.13206300	1.96156400
С	5.27693500	7.55745000	-0.26792800
Н	5.60390700	6.99434200	0.61325600
Н	5.54032600	6.99557700	-1.17081400
Н	5.82512800	8.50517800	-0.28762900
С	7.90820400	-5.29932700	-0.99620200
С	8.94259000	-4.63529000	-0.29915200
С	8.69742100	-3.35312900	0.25110600
С	7.45204700	-2.77253400	0.09650100
С	6.42307900	-3.44611900	-0.60472000
С	6.65501900	-4.71152200	-1.15003800
Н	8.10672500	-6.27926800	-1.41197400
Н	9.49376600	-2.84834300	0.78539200
Н	5.87236400	-5.23409400	-1.68799200

С	5.51425900	-1.40006400	0.08019300
С	4.55280900	-0.41387100	0.21408100
С	3.26595800	-0.60264000	-0.34811500
С	2.99248900	-1.80903600	-1.03712500
С	3.96116000	-2.79962300	-1.17214800
С	5.22643900	-2.59751900	-0.61452000
Н	4.75955400	0.50638000	0.74855300
Н	2.00568000	-1.94482500	-1.46148300
Н	3.73057600	-3.71517100	-1.70563700
С	10.21647100	-5.24917600	-0.15282900
С	11.30541500	-5.77295600	-0.02828600
С	6.95941500	-1.40806100	0.59914500
С	6.99479200	-1.34333600	2.14618700
Н	8.02782800	-1.41481100	2.50551900
Н	6.56900300	-0.39551700	2.49427000
Н	6.41442300	-2.16681600	2.57157100
С	7.78162500	-0.25632100	-0.02888300
Н	8.82650700	-0.31379100	0.29708800
Н	7.74732700	-0.31924900	-1.12026600
Н	7.37263700	0.71147700	0.28313200
С	12.57907300	-6.39123500	0.11326400
С	-7.78498600	-5.45548800	0.56521400
С	-8.91141800	-4.68595100	0.19669300
С	-8.74451500	-3.31300600	-0.11007500
С	-7.48398700	-2.74861700	-0.04307700
С	-6.36233700	-3.52867100	0.32815900
С	-6.51677200	-4.88382300	0.63149900
Н	-7.92453200	-6.50395200	0.79713800
Н	-9.61136300	-2.72783400	-0.39376000
Н	-5.66293400	-5.48794600	0.91606200
С	-5.55243400	-1.36725700	-0.06255400
С	-4.61298700	-0.35493500	-0.14936100
С	-3.25354900	-0.62719400	0.14274900
С	-2.88651300	-1.94253600	0.51819500
С	-3.83265500	-2.95953000	0.60573500
С	-5.16976400	-2.67455600	0.31614200
Н	-4.89421700	0.65039500	-0.44206500
Н	-1.84520600	-2.14057100	0.73893700
Н	-3.52964900	-3.95930200	0.89663700
С	-10.19886700	-5.28579000	0.13553500
С	-11.29849700	-5.79950800	0.08469000
С	-7.06340100	-1.29950800	-0.32744800
С	-7.35140800	-0.91717500	-1.80008100
Н	-8.43027900	-0.93063100	-1.99307000

Н	-6.97213500	0.08970700	-2.00827300
Н	-6.86184000	-1.62398000	-2.47585900
С	-7.75500800	-0.32001900	0.65221700
Н	-8.84071100	-0.33588200	0.50273700
Н	-7.53568700	-0.60257500	1.68574600
Н	-7.39507700	0.70099500	0.48076600
С	-12.58262600	-6.40985000	0.02951300
С	-13.72643800	-5.65288700	-0.30071700
Н	-13.61460300	-4.59704000	-0.51363100
С	-14.98023900	-6.25702900	-0.35100700
Н	-15.85136500	-5.66451900	-0.60595800
С	-15.11918500	-7.62043500	-0.07488900
Н	-16.09652200	-8.08684500	-0.11509900
С	-13.99207800	-8.37974500	0.25301300
Н	-14.09506100	-9.43722700	0.46750500
С	-12.73400700	-7.78514500	0.30608200
Н	-11.85845300	-8.36963800	0.55977700
С	12.82107800	-7.66820800	-0.43584400
Н	12.02278600	-8.17210600	-0.96632300
С	14.06931700	-8.26954500	-0.29621600
Н	14.24256900	-9.25096200	-0.72248600
С	15.09652200	-7.61454800	0.38957300
Н	16.06646800	-8.08597800	0.49597300
С	14.86717000	-6.34914000	0.93779700
Н	15.66056000	-5.83778800	1.47068200
С	13.62243800	-5.73919900	0.80369200
Н	13.44067000	-4.75911000	1.22682500

1 2 1.5 5 1.5 11 1.0 2 3 1.5 25 1.0 3 4 1.5 23 1.0 461.0161.5 5 12 1.0 16 1.5 671.5151.5 7 8 1.5 22 1.0 891.5241.0 9 10 1.5 13 1.0 10 14 1.0 15 1.5 11 12 13 14 15 17 1.0 16 17 1.0

complex Pt-2 (DFT//B3LYP/6-31G(d)/LanL2DZ)

Symbolic Z-matrix:

Charge = 0 Multiplicity = 1

С	-3.48543800	5.86721500	0.00060800
С	-2.91915000	7.15048500	0.00075100
С	-1.51877600	7.22346600	0.00077300
С	-0.73680100	6.07156000	0.00066200
С	-2.67119800	4.74167600	0.00049600
С	0.73686600	6.07154600	0.00068800
С	1.51886500	7.22343600	0.00082500
С	2.91923700	7.15042600	0.00083800
С	3.48549900	5.86714500	0.00070500
С	2.67123600	4.74162200	0.00057100
Н	-4.55658600	5.73053800	0.00058200
Н	-3.06588400	3.73444900	0.00038300
Н	4.55664400	5.73044500	0.00070500
Н	3.06590100	3.73438700	0.00046500

Ν	1.32128100	4.83201100	0.00056400
Ν	-1.32124200	4.83203700	0.00052000
Pt	0.00000400	3.20283900	0.00037000
С	1.38068100	1.81219500	0.00023800
С	2.28547900	0.98599500	0.00017900
С	-1.38070100	1.81222200	0.00017800
С	-2.28550900	0.98603200	0.00004700
Н	1.03251700	8.18830800	0.00092100
Н	-1.03240900	8.18832800	0.00087600
С	3.75768100	8.43866000	0.00098600
С	-3.75756700	8.43873700	0.00087800
С	3.41698300	9.26448800	-1.26960300
Н	2.35699400	9.53744600	-1.29494900
Н	4.00898200	10.18651300	-1.27615800
Н	3.65046500	8.69105600	-2.17271400
С	3.41693100	9.26423700	1.27172300
Н	4.00894200	10.18625300	1.27848800
Н	2.35694400	9.53720600	1.29707200
Н	3.65036200	8.69062300	2.17473100
С	5.27525200	8.14246300	0.00098800
Н	5.57195200	7.58070100	0.89363200
Н	5.57198000	7.58084200	-0.89173600
Н	5.82155400	9.09148000	0.00107100
С	-3.41681200	9.26431700	1.27161200
Н	-2.35682100	9.53727000	1.29696500
Н	-4.00880800	10.18634200	1.27836900
Н	-3.65025600	8.69071200	2.17462300
С	-3.41684000	9.26454700	-1.26971400
Н	-4.00881600	10.18658700	-1.27627800
Н	-2.35684300	9.53747900	-1.29505500
Н	-3.65033000	8.69111500	-2.17282300
С	-5.27514400	8.14257200	0.00086600
Н	-5.57187600	7.58095800	-0.89186000
Н	-5.57186400	7.58081600	0.89350800
Н	-5.82142500	9.09160100	0.00094500
С	-8.06989900	-4.62764600	-0.00085900
С	-9.17892600	-3.75197800	-0.00094500
С	-8.95776700	-2.35227600	-0.00085000
С	-7.66386500	-1.86690500	-0.00067600
С	-6.55905500	-2.75270000	-0.00059300
С	-6.76709200	-4.13473700	-0.00068400
Н	-8.24899000	-5.69567600	-0.00093300
Н	-9.81178600	-1.68530100	-0.00091700
Н	-5.92771700	-4.82061100	-0.00062100

С	-5.66368400	-0.58959000	-0.00040000
С	-4.67953700	0.38214600	-0.00025200
С	-3.31371000	0.00497400	-0.00011000
С	-2.98887800	-1.37341200	-0.00012700
С	-3.98035700	-2.35067300	-0.00028000
С	-5.32285200	-1.96199800	-0.00041600
Н	-4.93186100	1.43651200	-0.00024100
Н	-1.94303600	-1.65327500	-0.00001900
Н	-3.70746400	-3.40021500	-0.00029200
С	-10.50479400	-4.26294500	-0.00112300
С	-11.64872800	-4.67456700	-0.00127200
С	-12.99522900	-5.12982400	-0.00143500
С	-13.29399700	-6.54085300	-0.00154900
С	-14.03975100	-4.20957100	-0.00148100
С	-12.27688700	-7.53142300	-0.00151600
С	-14.66602200	-6.95728900	-0.00170000
С	-15.38449200	-4.63440600	-0.00163300
Н	-13.80718600	-3.15213900	-0.00139500
С	-12.59709300	-8.87098600	-0.00162300
Н	-11.24341800	-7.20741900	-0.00140400
С	-14.96089800	-8.34959800	-0.00180800
С	-15.69510600	-5.97621600	-0.00173900
Н	-16.17372800	-3.89181100	-0.00166500
С	-13.95212500	-9.28515800	-0.00177000
Н	-11.81074700	-9.61678400	-0.00159600
Н	-16.00082100	-8.65875400	-0.00192100
Н	-16.72873400	-6.30494100	-0.00185400
Н	-14.18859900	-10.34283200	-0.00185300
С	-7.18796400	-0.40790200	-0.00055500
С	-7.65988700	0.32758500	-1.27881500
Н	-8.75405100	0.38835900	-1.30026400
Н	-7.25395800	1.34543100	-1.30033400
Н	-7.31761600	-0.20676500	-2.16947400
С	-7.66014600	0.32745000	1.27769100
Н	-8.75431300	0.38823500	1.29891900
Н	-7.31806700	-0.20700500	2.16836100
Н	-7.25420700	1.34528800	1.29940700
С	8.06990400	-4.62764800	-0.00006000
С	9.17892500	-3.75197300	0.00008000
С	8.95775800	-2.35227200	0.00019100
С	7.66385300	-1.86690900	0.00016200
С	6.55904800	-2.75271000	0.00002500
С	6.76709300	-4.13474600	-0.00008700
Н	8.24900100	-5.69567600	-0.00014500

Н	9.81177300	-1.68529200	0.00029900
Н	5.92772300	-4.82062500	-0.00019200
С	5.66366400	-0.58960600	0.00017600
С	4.67951100	0.38212500	0.00022300
С	3.31368700	0.00494300	0.00012400
С	2.98886300	-1.37344400	-0.00002400
С	3.98034800	-2.35069900	-0.00006700
С	5.32284000	-1.96201600	0.00003400
Н	4.93182900	1.43649200	0.00033600
Н	1.94302300	-1.65331300	-0.00009900
Н	3.70746200	-3.40024300	-0.00017700
С	10.50479700	-4.26293200	0.00011200
С	11.64873000	-4.67455500	0.00014100
С	12.99521400	-5.12986300	0.00017900
С	13.29392900	-6.54090300	0.00018200
С	14.03977000	-4.20964800	0.00021400
С	12.27678200	-7.53143400	0.00015100
С	14.66593800	-6.95739000	0.00022100
С	15.38449500	-4.63453400	0.00025200
Н	13.80724400	-3.15220700	0.00021100
С	12.59693700	-8.87100900	0.00015600
Н	11.24332500	-7.20739100	0.00012400
С	14.96076200	-8.34971000	0.00022400
С	15.69505900	-5.97635600	0.00025500
Н	16.17375900	-3.89196800	0.00028000
С	13.95195400	-9.28523300	0.00019200
Н	11.81056300	-9.61677700	0.00013200
Н	16.00067300	-8.65890500	0.00025300
Н	16.72867500	-6.30511900	0.00028400
Н	14.18838800	-10.34291600	0.00019500
С	7.18794300	-0.40790900	0.00025500
С	7.65994400	0.32742500	1.27857500
Н	8.75410900	0.38820700	1.29995900
Н	7.25400600	1.34526500	1.30024700
Н	7.31773800	-0.20703800	2.16919100
С	7.66003800	0.32760200	-1.27793100
Н	8.75420400	0.38839200	-1.29922400
Н	7.31790200	-0.20674400	-2.16864400
Н	7.25409500	1.34544200	-1.29949400

1 2 1.5 5 1.5 11 1.0 2 3 1.5 25 1.0 3 4 1.5 23 1.0 4 6 1.0 16 1.5

49

```
137
138 139 1.0 140 1.0 141 1.0
139
140
141
```

complex Pt-3 (DFT//B3LYP/6-31G(d)/LanL2DZ)

Symbolic Z-matrix: Charge = 0 Multiplicity = 1

С	3.48108400	6.44260700	-0.17905100
С	2.91618300	7.72618000	-0.15228700
С	1.51747200	7.80035700	-0.08223600
С	0.73598200	6.64896600	-0.03864900
С	2.66727800	5.31753200	-0.13654500
С	-0.73598300	6.64897800	0.03858100
С	-1.51745800	7.80038100	0.08208300
С	-2.91617200	7.72622700	0.15212500
С	-3.48108700	6.44266200	0.17897700
С	-2.66729400	5.31757300	0.13656400
Н	4.55072800	6.30506700	-0.23362700
Н	3.06112400	4.31014500	-0.15714800
Н	-4.55073400	6.30514000	0.23354800
Н	-3.06115300	4.31019300	0.15724200
Ν	-1.31922500	5.40919100	0.06653700
Ν	1.31921000	5.40917100	-0.06651900
Pt	-0.00001800	3.78097600	0.00005300
С	-1.37245000	2.38349600	0.07114800
С	-2.25718800	1.53762100	0.12238100
С	1.37240200	2.38347800	-0.07093400
С	2.25713700	1.53759700	-0.12213000
Н	-1.03225800	8.76568000	0.06181000
Н	1.03228700	8.76566500	-0.06202300
С	-3.75437100	9.01360100	0.20150900
С	3.75440200	9.01353400	-0.20180500
С	-3.37268200	9.81370900	1.47706700
Н	-2.31205900	10.08546600	1.47310100
Н	-3.96388000	10.73519500	1.52134700
Н	-3.57698700	9.22188900	2.37535900
С	-3.45504000	9.86550900	-1.06214100
Н	-4.04703100	10.78701900	-1.03023200
Н	-2.39677300	10.14081500	-1.11661400
Н	-3.71780200	9.31094700	-1.96900400
С	-5.27119700	8.71639000	0.24313400

Н	-5.59330400	8.16521800	-0.64733400
Н	-5.54183500	8.14373700	1.13709100
Н	-5.81763500	9.66491500	0.27089300
С	3.37259300	9.81359700	-1.47736200
Н	2.31197500	10.08537300	-1.47329000
Н	3.96380400	10.73507100	-1.52173700
Н	3.57679300	9.22173800	-2.37565200
С	3.45523400	9.86551100	1.06183100
Н	4.04724300	10.78700600	1.02980600
Н	2.39698100	10.14085100	1.11641200
Н	3.71808400	9.31099700	1.96869900
С	5.27121500	8.71627900	-0.24358600
Н	5.59339200	8.16508600	0.64684400
Н	5.54174600	8.14362700	-1.13757500
Н	5.81767900	9.66478700	-0.27139000
С	7.73696500	-4.34571300	-0.61943100
С	8.86571200	-3.58920600	-0.22856800
С	8.70518500	-2.21741500	0.09020400
С	7.45050600	-1.64257300	0.01307300
С	6.32727800	-2.40977900	-0.38080100
С	6.47488300	-3.76323100	-0.69611100
Н	7.87031100	-5.39295300	-0.86089300
Н	9.57239900	-1.64134000	0.39124700
Н	5.62005500	-4.35746500	-0.99783500
С	5.52935500	-0.24682200	0.02372300
С	4.59631200	0.77125800	0.11130700
С	3.23841100	0.51230800	-0.19972300
С	2.86669800	-0.79585600	-0.59570000
С	3.80618600	-1.81867900	-0.68384900
С	5.14176900	-1.54694700	-0.37450500
Н	4.88120400	1.77098000	0.41914600
Н	1.82685000	-0.98338100	-0.83186900
Н	3.49957200	-2.81268900	-0.99028600
С	10.14546000	-4.19995200	-0.15794400
С	11.24132400	-4.72647300	-0.10007800
С	7.03745700	-0.19321700	0.30730500
С	7.31104600	0.17221900	1.78697500
Н	8.38750400	0.14963400	1.99219400
Н	6.93623700	1.17953600	2.00085100
Н	6.80911200	-0.53779400	2.45018300
С	7.74781300	0.79067100	-0.65444500
Н	8.83143100	0.76636700	-0.49141200
Н	7.53979700	0.51939500	-1.69330400
Н	7.39233200	1.81232500	-0.47783900

С	12.51454700	-5.34844200	-0.03839200
С	12.63749000	-6.74135300	-0.30941800
С	13.66728800	-4.58046100	0.29204200
С	11.51050900	-7.55315400	-0.64276300
С	13.93811600	-7.36466700	-0.24753600
С	14.95783700	-5.22478500	0.34836400
С	13.59406200	-3.18165300	0.57218200
С	11.65449700	-8.89224200	-0.89922000
Н	10.53689500	-7.08170600	-0.68710200
С	14.04425200	-8.76630400	-0.52305000
С	15.06097200	-6.59456900	0.07803900
С	16.10711200	-4.43768500	0.68174000
Н	12.62405900	-2.70252000	0.52849700
С	14.71860900	-2.46359900	0.88768400
С	12.93833000	-9.50876400	-0.83914800
Н	10.78845000	-9.49340900	-1.15039300
Н	15.02580100	-9.22564600	-0.47412600
Н	16.03519300	-7.07129000	0.12235500
С	15.99351600	-3.09875400	0.94370700
Н	17.07237700	-4.93108900	0.72151500
Н	14.64478200	-1.40285300	1.09747800
Н	13.03041800	-10.56869700	-1.04529600
Н	16.87002700	-2.51312000	1.19515400
С	-7.73691500	-4.34579000	0.61927100
С	-8.86567900	-3.58925800	0.22850200
С	-8.70518100	-2.21742700	-0.09010700
С	-7.45051300	-1.64256800	-0.01291100
С	-6.32726400	-2.40980400	0.38084300
С	-6.47484000	-3.76329800	0.69599200
Н	-7.87024100	-5.39305900	0.86061500
Н	-9.57241100	-1.64132600	-0.39105400
Н	-5.61999600	-4.35755100	0.99763000
С	-5.52938600	-0.24678500	-0.02344400
С	-4.59636000	0.77131300	-0.11096600
С	-3.23843400	0.51233300	0.19993000
С	-2.86668000	-0.79588000	0.59570800
С	-3.80615500	-1.81872000	0.68380000
С	-5.14176500	-1.54695700	0.37459600
Н	-4.88128400	1.77106900	-0.41866700
Н	-1.82681100	-0.98342700	0.83176600
Н	-3.49951000	-2.81276800	0.99008300
С	-10.14542200	-4.20001300	0.15784500
С	-11.24128300	-4.72653500	0.09994500
С	-7.03751500	-0.19314700	-0.30687900

С	-7.31131400	0.17266900	-1.78639300
Н	-8.38780300	0.15016500	-1.99145500
Н	-6.93651600	1.18003300	-2.00007600
Н	-6.80950200	-0.53718600	-2.44986500
С	-7.74776300	0.79047900	0.65525300
Н	-8.83139900	0.76624700	0.49232500
Н	-7.53964400	0.51886900	1.69400400
Н	-7.39226700	1.81217600	0.47893400
С	-12.51451200	-5.34848900	0.03824600
С	-12.63746900	-6.74141000	0.30921900
С	-13.66725200	-4.58047700	-0.29212000
С	-11.51049100	-7.55324000	0.64250100
С	-13.93810700	-7.36470100	0.24736000
С	-14.95781300	-5.22478000	-0.34842900
С	-13.59401200	-3.18165900	-0.57220300
С	-11.65449500	-8.89233500	0.89892000
Н	-10.53686700	-7.08181300	0.68682200
С	-14.04426000	-8.76634400	0.52283300
С	-15.06096200	-6.59457200	-0.07815200
С	-16.10708400	-4.43764900	-0.68174200
Н	-12.62400100	-2.70254300	-0.52852200
С	-14.71855700	-2.46357600	-0.88764900
С	-12.93834000	-9.50883300	0.83887200
Н	-10.78845100	-9.49352400	1.15005000
Н	-15.02581900	-9.22566600	0.47392800
Н	-16.03519200	-7.07127500	-0.12246000
С	-15.99347500	-3.09871000	-0.94366300
Н	-17.07235900	-4.93103700	-0.72151100
Н	-14.64472100	-1.40282200	-1.09740100
Н	-13.03044000	-10.56877100	1.04499100
Н	-16.86998300	-2.51305300	-1.19506800

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is O The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is C The Royal Society of Chemistry 2012

145 152 1.0
146
147
148
149 153 1.0
150
151
152
153

complex Pt-4 (DFT//B3LYP/6-31G(d)/LanL2DZ)

Symbolic Z-matrix:

Charge = 0 Multiplicity = 1

С	-3.48139300	6.86833300	-0.19129600
С	-2.91695400	8.15124800	-0.13838300
С	-1.51786400	8.22440300	-0.07559000
С	-0.73566800	7.07273500	-0.06355000
С	-2.66689100	5.74301500	-0.17948700
С	0.73681000	7.07250800	0.00102400
С	1.51732000	8.22378500	0.06284100
С	2.91667300	8.15021600	0.11756900
С	3.48331900	6.86721300	0.10889200
С	2.67042100	5.74229300	0.04857100
Н	-4.55126700	6.73133800	-0.24289300
Н	-3.06057400	4.73619700	-0.22092500
Н	4.55365200	6.73010600	0.14902100
Н	3.06540100	4.73520100	0.04115600
Ν	1.32171100	5.83325600	-0.00491800
Ν	-1.31836300	5.83351400	-0.11531500
Pt	0.00271300	4.20442000	-0.09451900
С	1.38289900	2.81349900	-0.06884200
С	2.28691400	1.98669800	-0.04929800
С	-1.37862700	2.81668300	-0.18119600
С	-2.28788400	1.99763100	-0.23886200
Н	1.03083400	9.18860000	0.06860100
Н	-1.03282000	9.18918200	-0.03672800
С	3.75381300	9.43735500	0.18653600
С	-3.75578200	9.43911600	-0.15278400
С	3.44926300	10.30959100	-1.06198000
Н	2.38992900	10.58209800	-1.10950600
Н	4.03849100	11.23228600	-1.01579700
Н	3.71179800	9.77113000	-1.97856200
С	3.37599900	10.21631200	1.47626000

Н	3.96836800	11.13626300	1.53417500
Н	2.31578400	10.48965800	1.47962800
Н	3.58191100	9.60953000	2.36413700
С	5.27101800	9.14091900	0.21816700
Н	5.54459800	8.55144500	1.10024500
Н	5.59115500	8.60727600	-0.68359300
Н	5.81669500	10.08925000	0.26235500
С	-3.44887000	10.26143200	1.12849600
Н	-2.39088100	10.53806000	1.18158100
Н	-4.04329300	11.18188000	1.12302100
Н	-3.70342400	9.68473400	2.02381600
С	-3.38212300	10.26848100	-1.41189100
Н	-3.97202200	11.19170400	-1.43046700
Н	-2.32103300	10.53836900	-1.40937500
Н	-3.59397500	9.69811000	-2.32224200
С	-5.27272700	9.14232000	-0.19228500
Н	-5.54833100	8.59050600	-1.09773900
Н	-5.58962400	8.57048900	0.68696100
Н	-5.81952200	10.09104900	-0.19496700
С	8.06622800	-3.63047300	0.08061700
С	9.17615500	-2.75599900	0.05037600
С	8.95570800	-1.35631300	0.01268900
С	7.66238800	-0.87019600	0.00597300
С	6.55675500	-1.75472100	0.03623500
С	6.76394400	-3.13653300	0.07366000
Н	8.24443500	-4.69824900	0.10962700
Н	9.81012600	-0.69025200	-0.01059500
Н	5.92406900	-3.82137800	0.09725900
С	5.66335500	0.40835700	-0.01951300
С	4.68008700	1.38062500	-0.04240800
С	3.31399500	1.00482000	-0.02579000
С	2.98769700	-0.37268800	0.01513900
С	3.97841800	-1.35045700	0.03796600
С	5.32133600	-0.96325300	0.02034800
Н	4.93322600	2.43431500	-0.07442900
Н	1.94159400	-0.65130800	0.02968700
Н	3.70457600	-2.39926600	0.06963700
С	10.50143600	-3.26603600	0.05725000
С	11.64675100	-3.67572200	0.06199700
С	7.18767000	0.58867500	-0.03064300
С	7.66505100	1.35600800	1.22677700
Н	8.75932300	1.41650500	1.24253200
Н	7.25986400	2.37438300	1.22371900
Н	7.32582900	0.84468000	2.13199900

С	7.65546800	1.29091900	-1.32888300
Н	8.74957800	1.35071100	-1.35561600
Н	7.30998600	0.73412300	-2.20442800
Н	7.24977300	2.30801400	-1.37530500
С	12.99627000	-4.11338200	0.06642100
С	13.32574600	-5.49865100	0.07400300
С	14.03376000	-3.15617300	0.06245300
С	14.70060000	-5.88626500	0.07706100
С	12.32018700	-6.52509100	0.07805300
С	15.36602300	-3.53692800	0.06579600
Н	13.76687700	-2.10691300	0.05679600
С	15.05103500	-7.27197200	0.08381400
С	15.73121700	-4.89550400	0.07299300
С	12.65470000	-7.84497800	0.08459300
Н	11.28263100	-6.21501900	0.07552800
Н	16.14435100	-2.78172200	0.06274100
С	14.02868100	-8.27026900	0.08762400
С	16.42614400	-7.66467400	0.08650600
С	17.10397100	-5.31994700	0.07611500
Н	11.88275300	-8.60700100	0.08751100
С	14.39677200	-9.62668400	0.09395500
С	16.74537200	-9.03316500	0.09283200
С	17.43688500	-6.64025300	0.08253100
Н	17.87482400	-4.55680900	0.07306800
С	15.74003700	-9.99924000	0.09647700
Н	13.62048300	-10.38401900	0.09681300
Н	17.78805500	-9.33179200	0.09482100
Н	18.47726800	-6.94705800	0.08471800
Н	16.00572300	-11.04994500	0.10131900
С	-8.18347600	-3.46898500	-0.79918000
С	-9.20074100	-2.71029100	-0.17719800
С	-8.90367500	-1.40785300	0.29650700
С	-7.62735500	-0.90125100	0.14224100
С	-6.61586600	-1.66822700	-0.48541900
С	-6.89860200	-2.95410700	-0.95446700
Н	-8.41996900	-4.46297600	-1.15808300
Н	-9.68670200	-0.83103300	0.77443100
Н	-6.13072400	-3.54873700	-1.43589200
С	-5.62561300	0.37294000	0.09265500
С	-4.62149900	1.31921300	0.19167700
С	-3.09943100	-0.22427500	-0.92455600
С	-4.11101100	-1.17568400	-1.02356000
С	-5.37908800	-0.87948800	-0.51620700
Н	-4.79773500	2.27991200	0.66223000

Н	-2.11035700	-0.43283800	-1.31240800
Н	-3.91148500	-2.13353500	-1.49118500
С	-10.50998400	-3.23900200	-0.02450300
С	-11.64007700	-3.66519900	0.11967100
С	-7.08026900	0.46601600	0.57400800
С	-7.83200400	1.61542900	-0.14044400
Н	-8.88569100	1.62553000	0.16103300
Н	-7.38519700	2.58017600	0.12579400
Н	-7.77539500	1.48682000	-1.22508500
С	-7.14392800	0.62497500	2.11332500
Н	-8.18607200	0.62322900	2.45287400
Н	-6.61176800	-0.19762700	2.59907700
Н	-6.67996500	1.57118800	2.41400100
С	-12.97070600	-4.12181900	0.30425800
С	-13.33708600	-5.46955200	0.02722200
С	-13.95110500	-3.22195800	0.77496700
С	-14.69008800	-5.87872500	0.23361800
С	-12.38942000	-6.43793700	-0.45110900
С	-15.26271800	-3.62296300	0.97204600
Н	-13.65680800	-2.20059300	0.98088600
С	-15.07596600	-7.22863700	-0.03495300
С	-15.66295500	-4.94598800	0.71009700
С	-12.75775900	-7.72361200	-0.70695100
Н	-11.36754600	-6.11248000	-0.60120000
Н	-15.99696200	-2.91167400	1.33415600
С	-14.11093400	-8.16943300	-0.50947800
С	-16.42902900	-7.64309700	0.17170600
С	-17.01502900	-5.39079600	0.90698300
Н	-12.02929800	-8.44198300	-1.06735300
С	-14.51279400	-9.49177100	-0.76526700
С	-16.78363800	-8.97589400	-0.09793000
С	-17.38180800	-6.67681200	0.65058800
Н	-17.74205600	-4.67168000	1.26880400
С	-15.83409200	-9.88602700	-0.56043500
Н	-13.78013600	-10.20568700	-1.12548200
Н	-17.80955500	-9.29106300	0.05863200
Н	-18.40588900	-6.99969100	0.80390100
Н	-16.12623000	-10.90991700	-0.76267400
С	-3.33120800	1.03552700	-0.32111200

1 2 1.5 5 1.5 11 1.0 2 3 1.5 25 1.0 3 4 1.5 23 1.0 4 6 1.0 16 1.5

49

137 140 1.5 143 1.0
138
139 144 1.5 145 1.5
140 146 1.5
141 144 1.5 147 1.0
142
143
144 148 1.5
145 149 1.5 150 1.5
146 150 2.0 151 1.0
147
148 152 1.5 153 1.0
149 152 1.5 154 1.0
150 155 1.0
151
152 156 1.0
153
154
155
156
157

The coordinates of complex Pt-5 (DFT//B3LYP/6-31G(d)/LanL2DZ)

Symbolic Z-matrix:

Charge = 0 Multiplicity = 1

С	3.47490700	7.36820600	-0.34552400
С	2.91420500	8.65280200	-0.29268200
С	1.51748600	8.72979000	-0.19206600
С	0.73399200	7.57986700	-0.14372600
С	2.65923000	6.24473400	-0.29795800
С	-0.73607100	7.58240300	-0.03558100
С	-1.51395600	8.73490100	0.03726400
С	-2.91117700	8.66265900	0.13379700
С	-3.47837800	7.38004100	0.15670200
С	-2.66815800	6.25388400	0.08535600
Н	4.54271500	7.22832200	-0.42475700
Н	3.04989500	5.23664700	-0.33879800
Н	-4.54705000	7.24390400	0.23051400
Н	-3.06361100	5.24701100	0.10236500
Ν	-1.32158500	6.34361300	-0.01028300
Ν	1.31314200	6.33896700	-0.19741500
Pt	-0.00823200	4.71295800	-0.12098400
С	-1.38404600	3.31961700	-0.03633000
С	-2.27375900	2.47973800	0.02595200

С	1.36342900	3.31712100	-0.23590300
С	2.25527500	2.48125200	-0.31709200
Н	-1.02713500	9.69947400	0.01904000
Н	1.03539300	9.69606700	-0.15180500
С	-3.74567700	9.95073900	0.21585900
С	3.75469700	9.93838700	-0.34871800
С	-3.34374200	10.72886200	1.49885800
Н	-2.28251800	10.99795600	1.48387200
Н	-3.93195800	11.65083800	1.56677100
Н	-3.53650100	10.12269900	2.39011300
С	-3.46299900	10.82347100	-1.03733800
Н	-4.05217900	11.74562000	-0.98067600
Н	-2.40504100	11.09753700	-1.10284000
Н	-3.74059800	10.28522700	-1.94960400
С	-5.26242100	9.65585300	0.27416700
Н	-5.59747100	9.11795200	-0.61962600
Н	-5.52204800	9.07078300	1.16332000
Н	-5.80662400	10.60481900	0.32300100
С	3.35702700	10.74278700	-1.61673300
Н	2.29672300	11.01518500	-1.59755300
Н	3.94863100	11.66377400	-1.66642600
Н	3.54852900	10.15316600	-2.51929200
С	3.47529300	10.78780300	0.92105600
Н	4.06996500	11.70738900	0.88357900
Н	2.41892200	11.06691400	0.99059900
Н	3.74832200	10.22996600	1.82287200
С	5.27014300	9.63780900	-0.41205300
Н	5.60219800	9.08020700	0.47072800
Н	5.52779100	9.06995100	-1.31284200
Н	5.81860700	10.58514100	-0.44126200
С	7.91587200	-3.19862400	-1.10936300
С	8.96252900	-2.51697800	-0.44774100
С	8.72082300	-1.22728300	0.08701700
С	7.46841200	-0.65718600	-0.04841700
С	6.42770600	-1.34836000	-0.71421600
С	6.65563500	-2.62127500	-1.24352300
Н	8.11102700	-4.18400100	-1.51376800
Н	9.52586200	-0.70831900	0.59409100
Н	5.86436600	-3.15763800	-1.75475500
С	5.52303600	0.70496200	-0.04514800
С	4.55964500	1.68866900	0.09243100
С	3.26146000	1.48364700	-0.43719500
С	2.97898700	0.26354400	-1.09765300
С	3.94970200	-0.72465500	-1.23655700

С	5.22622900	-0.50640900	-0.71159800
Н	4.77341400	2.61953800	0.60536800
Н	1.98368100	0.11524300	-1.49729100
Н	3.71205700	-1.65083700	-1.74814900
С	10.24361300	-3.11915900	-0.32294300
С	11.34035600	-3.63234900	-0.21813900
С	6.97925500	0.71290000	0.44222600
С	7.04678100	0.80315100	1.98683000
Н	8.08746300	0.74304800	2.32568000
Н	6.62274000	1.75417700	2.32829800
Н	6.48000800	-0.01649100	2.43720400
С	7.78153600	1.85822000	-0.22206700
Н	8.83416900	1.80927800	0.07930100
Н	7.72122600	1.77876400	-1.31124200
Н	7.37635500	2.82913300	0.08531500
С	12.62090300	-4.23472800	-0.10149800
С	-7.80551300	-3.34830000	0.61602600
С	-8.93565500	-2.57481100	0.26609900
С	-8.76765500	-1.20265400	-0.04488000
С	-7.50382300	-0.64350200	0.00035700
С	-6.37908200	-1.42744300	0.35340200
С	-6.53415800	-2.78173700	0.66030400
Н	-7.94521000	-4.39598400	0.85143400
Н	-9.63666500	-0.61398200	-0.31443900
Н	-5.67815400	-3.38918100	0.93115200
С	-5.56765000	0.73095300	-0.05122700
С	-4.62609900	1.73984200	-0.15327000
С	-3.26304600	1.46291000	0.11704700
С	-2.89481000	0.14640500	0.48681900
С	-3.84309600	-0.86725700	0.58974400
С	-5.18369700	-0.57778600	0.32152300
Н	-4.90835600	2.74621000	-0.44146000
Н	-1.85082800	-0.05533300	0.69102400
Н	-3.53902200	-1.86802200	0.87610800
С	-10.22577400	-3.16944700	0.22853300
С	-11.32821800	-3.68026000	0.19897000
С	-7.08251000	0.80380200	-0.29213700
С	-7.39176800	1.18564800	-1.76056500
Н	-8.47348900	1.17589700	-1.93715600
Н	-7.01197400	2.19090000	-1.97564100
Н	-6.91507800	0.47626000	-2.44281100
С	-7.75526000	1.78675200	0.69705600
Н	-8.84335900	1.77291800	0.56598000
Н	-7.51923200	1.50548200	1.72725600

Н	-7.39610800	2.80671100	0.51775200
С	-12.61142300	-4.28763000	0.16982900
С	-13.76680800	-3.53851600	-0.13874900
Н	-13.66512900	-2.48466600	-0.36636700
С	-15.01873300	-4.13665100	-0.17066100
Н	-15.89269700	-3.54897700	-0.41916800
С	-15.17067600	-5.50556000	0.11800400
С	-14.02236300	-6.25586200	0.43223900
Н	-14.12535700	-7.30857600	0.66019600
С	-12.76862400	-5.66169400	0.45112800
Н	-11.89447900	-6.25104100	0.69852800
С	12.87236400	-5.51608400	-0.63686600
Н	12.06843200	-6.04592000	-1.13251600
С	14.12283600	-6.10623600	-0.52069300
Н	14.29448700	-7.09358100	-0.92866700
С	15.17945900	-5.43551800	0.12313300
С	14.93527800	-4.15535700	0.65446300
Н	15.73940600	-3.62677300	1.14914200
С	13.68139000	-3.57016800	0.55048100
Н	13.51011900	-2.58263500	0.96060800
Ν	16.46295100	-6.03638700	0.23501200
Ν	-16.45413600	-6.11758500	0.09176200
С	-16.59972100	-7.45980200	-0.38177900
С	-17.43972700	-8.36380400	0.28823400
С	-15.90705000	-7.89156600	-1.52452500
С	-17.58690000	-9.66768700	-0.18157400
Н	-17.97228800	-8.03571700	1.17152000
С	-16.04598700	-9.20204400	-1.97799400
Н	-15.26188300	-7.19639200	-2.04600700
С	-16.88875000	-10.09670600	-1.31329300
Н	-18.23874000	-10.35387800	0.34689300
Н	-15.50423100	-9.52013500	-2.86134200
Н	-16.99969400	-11.11290100	-1.67196900
С	-17.60628000	-5.39887300	0.53920000
С	-17.54249700	-4.58726900	1.68382500
С	-18.82182900	-5.49915000	-0.15708200
С	-18.66758600	-3.88542500	2.11238100
Н	-16.60941900	-4.51079600	2.22690700
С	-19.94701300	-4.80768800	0.28789500
Н	-18.87483800	-6.12137200	-1.04108100
С	-19.87717300	-3.99348400	1.42121600
Н	-18.60164300	-3.26354000	2.99780800
Н	-20.87758400	-4.89571900	-0.26107400
Н	-20.75179000	-3.45188700	1.76080700

С	16.96863100	-6.86060200	-0.81890800
С	16.79466300	-6.48963200	-2.16231300
С	17.65142500	-8.05179900	-0.52399500
С	17.28216300	-7.30115300	-3.18498000
Н	16.27430700	-5.56926400	-2.39392600
С	18.15123400	-8.84906800	-1.55195300
Н	17.78606200	-8.34161900	0.51003600
С	17.96600000	-8.48291100	-2.88756800
Н	17.13883900	-7.00144800	-4.21679000
Н	18.67520900	-9.76612100	-1.30801000
Н	18.34925000	-9.10860800	-3.68458100
С	17.25963900	-5.82207100	1.40384900
С	16.67733600	-5.85514300	2.68144000
С	18.63818900	-5.58091300	1.28937600
С	17.45783200	-5.64028500	3.81592800
Н	15.61596700	-6.04593500	2.77468900
С	19.41510000	-5.38420800	2.42962500
Н	19.08990900	-5.55193000	0.30619500
С	18.83065100	-5.40773600	3.69856400
Н	16.99345500	-5.66905300	4.79497200
Н	20.47796300	-5.19890200	2.32459200
Н	19.43587600	-5.24773900	4.58271600

1 2 1.5 5 1.5 11 1.0 2 3 1.5 25 1.0 3 4 1.5 23 1.0 461.0161.5 5 12 1.0 16 1.5 671.5151.5 7 8 1.5 22 1.0 891.5241.0 9 10 1.5 13 1.0 10 14 1.0 15 1.5 11 12 13 14 15 17 1.0 16 17 1.0 17 18 1.0 20 1.0 18 19 3.0 19911.5 20 21 3.0 21 61 1.5
complex Pt-6 (DFT//B3LYP/6-31G(d)/LanL2DZ)

Symbolic Z-matrix: Charge = 0 Multiplicity = 1

С	11.05047000	2.28449600	0.00678600
С	11.02253500	0.88200200	0.00657300
С	9.81600600	0.18637100	0.00479300
Ν	8.62253200	0.86084700	0.00318400
С	8.63006400	2.21368800	0.00329800
С	9.81197900	2.94307500	0.00506200
С	9.70343900	-1.28246500	0.00454900
С	10.79287200	-2.15527400	0.00550200
С	10.60083000	-3.53916200	0.00517900
С	9.27751000	-4.01019000	0.00385900
С	8.22240800	-3.11193300	0.00291100
Ν	8.42452900	-1.76981200	0.00324200
С	12.39534500	3.02995800	0.00885300
С	11.78599600	-4.49540800	0.00612500
С	12.20578900	4.56390200	0.00900500
С	13.19649100	2.63212700	-1.26089100
С	13.19304000	2.63144200	1.28054900
С	11.78193200	-5.37581400	1.28119000

С	11.78435500	-5.37521700	-1.26938000
Pt	6.90177700	-0.33151300	0.00138000
С	5.38363400	-1.57077100	0.00036000
С	5.59534100	1.12879300	-0.00067000
С	4.42111700	-2.32828300	0.00003900
С	4.77179800	2.03545400	-0.00201500
С	3.22558800	-3.09606600	-0.00114400
С	1.64883900	4.89013000	-0.00388000
С	1.97013200	-2.43611400	-0.01542500
С	0.80354800	-3.17733800	-0.01672600
С	0.84663300	-4.59154500	-0.00368900
С	2.07523200	-5.25626000	0.01066200
С	3.25150800	-4.51015500	0.01183100
С	-0.64801400	-2.67780500	-0.03086600
С	-1.42126200	-4.00448100	-0.02661200
С	-0.52835800	-5.10319200	-0.00927100
С	-2.78875700	-4.20713100	-0.03580200
С	-3.29948900	-5.52869900	-0.02698500
С	-2.39950800	-6.61828700	-0.00890600
С	-1.02243700	-6.41042000	-0.00035200
С	-0.94518600	-1.86606300	-1.31550700
С	-0.96308300	-1.85021100	1.23959100
С	-4.70229600	-5.75533300	-0.03577400
С	-5.90356700	-5.93924200	-0.04304000
С	3.72812600	2.99954600	-0.00313700
С	4.00199800	4.38727800	-0.00246500
С	2.97523000	5.32856300	-0.00280600
С	1.35823600	3.50502800	-0.00486400
С	2.37647300	2.57035700	-0.00448900
С	0.38462300	5.63503100	-0.00354100
С	-0.68666000	4.70926600	-0.00432900
С	-0.15846400	3.26805400	-0.00579200
С	0.12650900	7.00867300	-0.00206800
С	-1.19309800	7.45380800	-0.00112300
С	-2.26959000	6.53809200	-0.00162700
С	-1.99764300	5.14760700	-0.00340500
С	-3.61146900	7.00558600	0.00016100
С	-4.76201700	7.39683200	0.00218000
С	-0.60580300	2.51413400	1.27068200
С	-0.60469200	2.51728200	-1.28454700
С	-7.30770100	-6.15781300	-0.05021300
С	-6.11121300	7.84293900	0.00487800
С	-7.82890100	-7.47232100	0.02838000
С	-9.19893100	-7.66378300	0.02166300

С	-10.08071700	-6.56149200	-0.06438200	
С	-9.57765900	-5.26119900	-0.14260400	
С	-8.19890900 -5.0637750		-0.13489700	
С	-6.40845800	9.22493200	0.00508100	
С	-7.72680200	9.67449300	0.00788400	
С	-8.76542500	8.74103900	0.01051200	
С	-8.48019600	7.35597500	0.01033500	
С	-7.17250900	6.90514600	0.00755500	
С	-9.98308900	-8.98110700	0.09897300	
С	-11.42966800	-8.47290100	0.04148400	
С	-11.46376800	-7.06312100	-0.05268900	
С	-10.22573600	8.92034500	0.01375300	
С	-10.83539100	7.64498700	0 0.01552600	
С	-9.77671200	6.53465000	0.01352000	
С	-12.61114800	-9.20181600	0.07156800	
С	-13.83472000	-8.52050000	0.00761400	
С	-13.86778300	-7.12462000	-0.08529100	
С	-12.68191300	-6.38467400	-0.11608600	
С	-11.00313900	10.07956600	0.01520000	
С	-12.39583000	9.95715500	0.01844600	
С	-13.00009800	8.69501800	0.02019300	
С	-12.21924300	7.53061100	0.01873200	
С	-9.70626900	-9.71420800	1.43492800	
С	-9.66433700	-9.88923900	-1.11446600	
С	-9.87940900	5.66617300	1.29195500	
С	-9.88514600	5.66535800	-1.26388900	
Н	11.95030000	0.32750800	0.00790500	
Н	7.65486700	2.68194300	0.00195800	
Н	9.75323500	4.02125100	0.00512300	
Н	11.79952300	-1.75909800	0.00645000	
Н	9.06609000	-5.07129900	0.00352100	
Н	7.18602400	-3.42171400	0.00184200	
Н	12.70137400	-3.89033000	0.00713300	
Н	11.66433500	4.89797400	0.90094400	
Н	11.66683000	4.89845200	-0.88425800	
Н	13.18996300	5.04401200	0.01050100	
Н	12.64391600	2.90978500	-2.16457500	
Н	13.39030900	1.55496300	-1.28839600	
Н	14.15971400	3.15445500	-1.26387600	
Н	12.63790800	2.90836400	2.18288800	
Н	14.15613000	3.15398000	1.28654700	
Н	13.38704900	1.55430600	1.30787600	
Н	12.66219100	-6.02774900	1.28657800	
Н	11.79743100	-4.75760000	2.18434100	

Н	10.88759200	-6.00748000	1.30825600
Н	12.66466500	-6.02709200	-1.27345000
Н	11.80148400	-4.75656300	-2.17219900
Н	10.89010200	-6.00692200	-1.29840200
Н	1.95539000	-1.35258700	-0.02524400
Н	2.11834500	-6.33987700	0.02066900
Н	4.21271900	-5.00941100	0.02297000
Н	-3.48279800	-3.37503500	-0.04872700
Н	-2.80026900	-7.62424300	-0.00229300
Н	-0.34619800	-7.25761800	0.01305000
Н	-2.00424000	-1.58608900	-1.35085400
Н	-0.34460300	-0.94924800	-1.33079000
Н	-0.70540100	-2.45900000	-2.20257500
Н	-0.73643700	-2.43258700	2.13705100
Н	-0.36213000	-0.93364300	1.25262900
Н	-2.02237900	-1.56939000	1.25640000
Н	5.03604200	4.70997100	-0.00146900
Н	3.20817100	6.38776900	-0.00205200
Н	2.17200300	1.50616100	-0.00487600
Н	0.94047700	7.72466900	-0.00145900
Н	-1.41208300	8.51429600	0.00022500
Н	-2.82655200	4.44967000	-0.00378700
Н	-0.17890500	1.50478200	1.28339400
Н	-1.69809700	2.42780000	1.29640000
Н	-0.27150000	3.04940900	2.16381000
Н	-0.27032100	3.05526800	-2.17602700
Н	-1.69692700	2.43038300	-1.31102100
Н	-0.17709400	1.50823800	-1.29995100
Н	-7.14159400	-8.30754200	0.09253800
Н	-10.24681300	-4.41082400	-0.20857600
Н	-7.78966800	-4.06316900	-0.19469600
Н	-5.58929000	9.93293400	0.00303200
Н	-7.93710900	10.73800000	0.00801600
Н	-6.93970800	5.84692900	0.00745000
Н	-12.59438200	-10.28394800	0.14342400
Н	-14.76314100	-9.07940900	0.03023700
Н	-14.82204600	-6.61285700	-0.13393600
Н	-12.71201100	-5.30326700	-0.18811900
Н	-10.53895700	11.05937400	0.01385800
Н	-13.01381300	10.84765100	0.01962100
Н	-14.08121100	8.61720200	0.02270800
Н	-12.69632400	6.55649000	0.02012900
Н	-10.32788600	-10.61390900	1.50707800
Н	-8.65358900	-10.01330200	1.49165500

Н	-9.93349900	-9.05848200	2.28017300
Н	-10.28113500	-10.79460500	-1.08186600
Н	-8.60977400	-10.18679000	-1.09769300
Н	-9.86628700	-9.35726700	-2.04845100
Н	-9.07263900	4.92480000	1.31093100
Н	-10.83861000	5.13658400	1.31354400
Н	-9.80229900	6.29488800	2.18349700
Н	-9.07847100	4.92397100	-1.28600300
Н	-9.81204500	6.29351500	-2.15616400
Н	-10.84443200	5.13575400	-1.28082100

1 2 1.5 6 1.5 13 1.0

2 3 1.5 89 1.0 3 4 1.5 7 1.0 4 5 1.5 20 1.0 561.5901.0 6911.0 7 8 1.5 12 1.5 891.5921.0 9 10 1.5 14 1.0 10 11 2.0 93 1.0 11 12 1.5 94 1.0 12 20 1.0 13 15 1.0 16 1.0 17 1.0 14 18 1.0 19 1.0 95 1.0 15 96 1.0 97 1.0 98 1.0 16 99 1.0 100 1.0 101 1.0 17 102 1.0 103 1.0 104 1.0 18 105 1.0 106 1.0 107 1.0 19 108 1.0 109 1.0 110 1.0 20 21 1.0 22 1.0 21 23 3.0 22 24 3.0 23 25 1.5 24 43 1.5 25 27 1.5 31 1.5 26 45 1.5 46 1.5 48 1.0 27 28 2.0 111 1.0 28 29 1.5 32 1.0 29 30 1.5 34 1.0 30 31 1.5 112 1.0 31 113 1.0 32 33 1.0 39 1.0 40 1.0 33 34 1.5 35 2.0

123		
124		
125		
126		
127		
128		
129		
130		
131		
132		
133		
134		
135		
136		
137		
138		
139		
140		
141		
142		
143		
144		
145		
146		
147		
148		
149		
150		
151		
152		
153		
154		
155		
156		
157		
158		
159		

122

160