Supporting Information

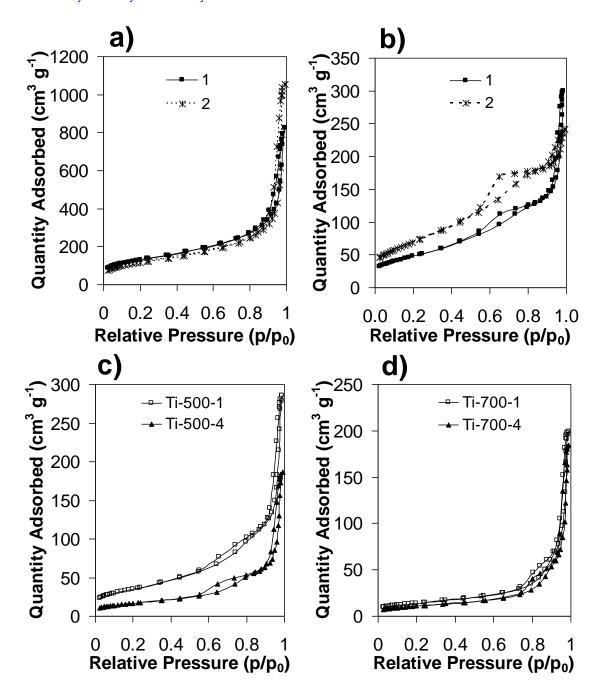
Sol-gel synthesis of hierarchically porous TiO_2 beads using calcium alginate beads as sacrificial templates

Maryline Chee Kimling^a and Rachel A. Caruso^{*ab}

^aParticulate Fluids Processing Centre, School of Chemistry, The University of Melbourne, Melbourne, Victoria 3010, Australia

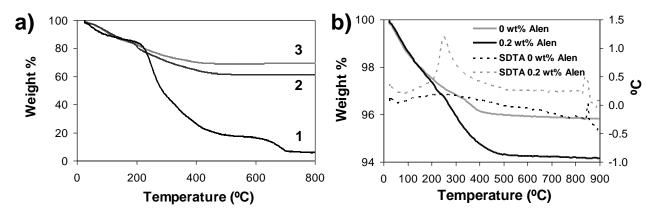
^bCSIRO, Materials Science and Engineering, Private Bag 33, Clayton South, Victoria 3169, Australia

* To whom correspondence should be addressed.


E-mail: rcaruso@unimelb.edu.au

Surface Hydroxyl Group (OH) Determination. Thermogravimetric testing was conducted on calcined TiO_2 beads to determine OH content using a procedure developed by Mueller *et al.*¹ The heating profile was set as follows under a nitrogen atmosphere: the materials were stabilized at 25 °C for 5 min before being subjected to a heating ramp of 10 °C min⁻¹ to 120 °C before further stabilization at that temperature for 30 min. The materials were then heated to 500 °C with a heating ramp of 20 °C min⁻¹. The surface hydroxyl group density was calculated based on the weight loss (g) between 120 °C and 500 °C using Equation S1 as follows:

$$OHnm^{-2} = \alpha \left(\frac{wt_{T_{1}} - wt_{T_{2}}}{wt_{T_{1}}}\right) \frac{2N_{A}}{SA_{BET} \times Mw_{H_{2}O}}$$
(S1)


where α is a calibration factor with the value 0.625, T_1 =120 °C and T_2 =500 °C, N_A is Avogadro's number and SA_{BET} is the BET surface area in nm² g⁻¹ and Mw_{H2O} is the molecular weight of water. Also,

$$OHg^{-1} = OHnm^{-2} \times SA_{BET}$$
 (S2)

Figure S1. N₂ sorption isotherms of (a) critical point dried CaAlg template beads prepared using (1) 1 wt% or (2) 2 wt% NaAlg solution, a 0.27 M Ca²⁺ bath and a curing time of 2 h and (b) TiO₂ beads prepared using CaAlg beads synthesized from (1) 1 wt% or (2) 2 wt% NaAlg solution, a 0.27 M Ca²⁺ bath and a curing time of 2 h. The templated beads were calcined at 450 °C. Nitrogen sorption isotherms of the TiO₂ beads originally calcined at (c) 500 °C and (d) 700 °C, and functionalized with 0 wt% (Ti-500-1 and Ti-700-1) or 1 wt% (Ti-500-4 and Ti-700-4) Alen . The CaAlg template beads employed for this study were produced from 1 wt% NaAlg, a 0.27 M Ca²⁺ bath and cured for 24 h. Isotherms have *not* been offset.

All sorption isotherms were of Type IV, indicative of the presence of a mesoporous structure and featured two hysteresis loops that can be associated with the presence of small mesopores and meso-macropores, at lower and higher relative pressures, respectively.

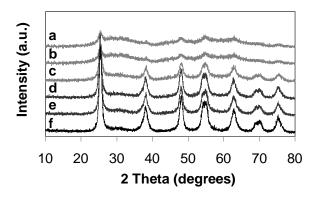
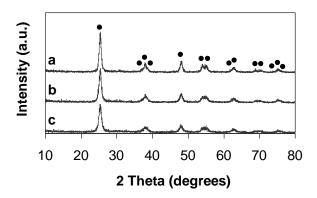

Figure S2. (a) Thermograms of (1) critical point dried CaAlg template beads prepared using 1 wt% NaAlg solution, a 0.27 M Ca²⁺ bath and cured for 2 h. Hybrid alginate/TiO₂ beads prepared using CaAlg template beads prepared from (2) 2 wt% or (3) 1 wt% NaAlg solution, 0.27 M Ca²⁺ bath with a curing time of 2 h. (b) Thermograms of Ti-500 beads loaded with 0 and 0.2 wt% Alen at pH 2.01. CaAlg template beads used were produced from 1 wt% NaAlg solution, 0.27 M Ca²⁺ and cured for 24 h. Solid lines represent thermogravimetric profiles related to the mass loss in percentage (Left axis, Weight %) whereas dashed lines represent single differential temperature profiles (SDTA) (Right axis, °C). Beads were subjected to a linear heating ramp of 10 °C min⁻¹ under an oxygen atmosphere.

Figure S2b shows the results obtained when Ti-500 beads were heated following functionalization with Alen at 0 and 0.2 wt% (pH 2.01). Alen loaded TiO₂ samples showed a distinct exothermic peak at ~250 °C. The exothermic peak occurring at ~850 °C (with no mass loss) was likely due to further crystallization occurring within the metal oxide, whereas the endothermic process occurring at ~100 °C was due to the evaporation of physisorbed water. Hence the temperature range (120-800 °C) was used to assess the mass loss attributed to Alen loading.


Table S1. Atomic percent composition of TiO_2 beads prepared using varying CaAlg template beads prepared from 1 or 2 wt% NaAlg and 0.14, 0.27 or 0.42 M Ca^{2+} and a curing time of 2 h.

NaAlg - Ca ²⁺ (wt% - M)	Atomic Percent (%) ^a		
IVI)	Ti	0	Ca
1- 0.14	30.28	67.90	1.82
1- 0.27	32.14	65.79	2.07
1- 0.42	36.22	60.31	3.48
2- 0.14	33.31	63.80	2.89
2- 0.27	37.25	59.48	3.27
2- 0.42	33.22	61.79	4.99

^aValues obtained are indicative only; as obtained from EDX analysis of the central region of the beads.

Figure S3. XRD patterns of TiO₂ beads calcined at 450 °C. The CaAlg template beads used were prepared using 2 wt% NaAlg solution and (a) 0.42 M, (b) 0.27 M or (c) 0.14 M Ca²⁺ or 1 wt% NaAlg solution and (d) 0.42 M, (e) 0.27 M or (f) 0.14 M Ca²⁺ with a curing time of 2 h. Patterns have each been shifted upwards by 200 a.u.

Figure S4. XRD patterns of TiO_2 beads calcined at (a) 500 °C, (b) 600 °C or (c) 700 °C. The CaAlg template beads employed were produced using 1 wt% NaAlg solution and 0.27 M Ca^{2+} with a curing time of 24 h. Dots represent anatase reflection peaks. Patterns have each been shifted upwards by 200 a.u.

1 R. Mueller, H. K. Kammler, K. Wegner and S. E. Pratsinis, *Langmuir*, 2003, **19**, 160.