A green and fast strategy for the scalable synthesis of Fe_2O_3 /graphene

with significantly enhanced Li-ion storage properties

Ming Zhang, Baihua Qu, Danni Lei, Yuejiao Chen, Xinzhi Yu, Libao Chen, Qiuhong Li, Yanguo Wang and Taihong Wang^{*}

Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education and State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China

^{*} To whom correspondence should be addressed. E-mail: <u>thwang@iphy.ac.cn</u>

I Experimental Section

Graphene oxide (GO) was prepared from graphite powders according to a modified Hummers' method.¹ The detail procedures were the same as our published studies.²⁻⁴

Synthesis of HGs (commercial hematite/graphene) The GO was mixed with commercial Fe_2O_3 with a weight rate of 8:2 by sonicating. Then, 1 mL N_2H_4 · H_2O was added in and the mixture was refluxed for 15 min with a microwave heater. Thirdly, the resulting products were collected by centrifugation, washed repeatedly with deionized water and dried under vacuum at 353 K for 24 h. Finally, HGs were achieved by treating the dry products at 493 K in Ar atmosphere to remove the impurities. The oxygen-containing groups were removed during the reduction procedures, therefore the weight ratio of Fe_2O_3 to graphene in HGs was about 8.4:1.6, which was similar to that of HGCs.

References

- N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva and A. D. Gorchinskiy, *Chem. Mater.*, 1999, **11**, 771.
- M. Zhang, D. N. Lei, Z. F. Du, X. M. Yin, L. B. Chen, Q. H. Li, Y. G. Wang and T. H. Wang, *J. Mater. Chem.*, 2011, **21**, 1673.
- M. Zhang, D. N. Lei, X. M. Yin, L. B. Chen, Q. H. Li, Y. G. Wang and T. H. Wang, J. Mater. Chem., 2010, 20, 5538.
- M. Zhang, S. Liu, X. M. Yin, Z. F. Du, Q. Y. Hao, D. N. Lei, Q. H. Li and T. H. Wang, *Chem. Asian J.*, 2011, 6, 1151.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2012

Electronic Supplementary Information (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2011

II Synthesizing HGCs at Large Scale

Figure S1. The weight of HGCs which could be prepared by a large reactor.

III FESEM Images of Anode Materials on Copper Foils

Figure S2. FESEM images of HGCs (a, b), HGs (c, d) and CHs (e, f) on copper foils

after 100 cycles.