(Supporting Information)

Bottom-up synthesis of large-scale graphene oxide nanosheets

Libin Tang,^{ab} Xueming Li,^c Rongbin Ji,^b Kar Seng Teng,^d Guoan Tai,^a Jing Ye,^a Changsong Wei,^a and

Shu Ping Lau*^a

Contents

- Figure S1. The typical digital photographs of as-grown GON samples
- Figure S2. The Raman peak assignments of the as-grown GON are compared with the source
- Figure S3. The Lorentz fitting of D and G peaks for annealed GON samples
- Table S1. The assignments of IR absorptions of source and as-grown GON
- Table S2. The assignments of Raman shifts of source and as-grown GON
- Table S3. The assignment of Raman peaks for annealed GON samples
- Table S4. The Lorentz fitting of D and G peaks for GON samples Annealed at 700°C and 1300°C

^aDepartment of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR

E-mail: apsplau@polyu.edu.hk

^bKunming Institute of Physics, Kunming 650223, P. R. China

^cSolar Energy Research Institute, Yunnan Normal University, Kunming 650092, P. R. China

^dMultidisciplinary Nanotechnology Center, School of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2012

Figure S1. As-grown GON samples. (a) A typical digital photograph of the as-grown GON on the surface of solution with a thickness of 63.6 nm (the lateral size reaches \sim 3cm). (b) A typical digital photograph of the transferred as-grown GON on quartz substrate. (c) A typical digital photograph of the transferred as-grown GON on SiO₂(300 nm)/Si substrate.

Figure S2. The Raman peak assignments of the as-grown GON are compared with the source. Except for peak 7, all the dispersion peaks of the GON are originated from the source after the polymerization. Peak 7 is related to C=C double bond, which only exists in the as-grown GON rather than in the source.

Figure S3. The Lorentz fitting of D and G peaks for annealed GON samples. The A_D/A_G ratio decreased

from 3.02 (annealed at 700 $^{\circ}$ C) to 2.20 (annealed at 1300 $^{\circ}$ C).

Source (Glucose)			As-grown GON			
Wavenumber (cm ⁻¹)	Transmittanc e (%)	Assignment	Wavenumber (cm ⁻¹)	Transmittance (%)	Assignment	
422.3	22.6	βCO,δring,τOH	418.5	74.1	τΟΗ, βCO	
513.0	3.3	γCO, βCO				
567.0	2.8					
771.4	2.0					
852.4	3.0	v _{ring} , <i>rock</i> CH ₂ , <i>v</i> CO				
916.0	3.4					
925.7	11.7					
1018.2	1.5	vCO,v _{ring}	1024.0	59.6	vCO,v _{ring} , yCO	
1051.0	1.5	$v_{\rm ring}, v{\rm CO}, \beta{\rm OH}$				
1072.2	2.8	νϹΟ,γϹΟ				
1093.5	2.7	v _{ring} ,vCO				
1110.8	1.9	v CO, δ_{ring} , γ CO, v_{ring}				
1157.1	1.8					
1209.2	5.3	$twCH_2, \beta OH, \beta CH$	1211.1	54.5	vCO	
1234.2	11.5	<i>β</i> ОН, <i>β</i> СН,γСН				
1249.7	10.2					
1265.1	16.6					
1332.6	4.9	<i>β</i> СН,γСН				
1361.5	6.2	γ CH, β OH, β CH,	1363.4	54.7	γCH, βOH, βCH	
1375.0	2.5	β CH, γ CH, β OH	1398.2	53.9	γСН, βОН	
1429.0	3.5		1621.9	50.5	vC=C	
1448.3	4.0	sciCH ₂	1666.2	50.7	vC=C	
2883.1	6.7	vsCH ₂	1700.9	49.6	vC=O	
2902.4	5.5	vCH	2925.5	49.1	vCH	
2937.1	2.9	vCH	2969.9	49.3	vCH	
2962.2	6.1	vCH	3401.9	43.1	vOH	
2971.8	5.2	vCH				

Table S1. The assignments of IR absorptions of source and as-grown GON (*)

*The abbreviations *s*, *as*, ν , δ , β , γ , *sci*, *rock*, *tw*, and τ mean symmetric, asymmetric, stretch, deformation, bend, wag, scissoring, rock, twist, and torsion, respectively

Table S2. The	e assignments	of Raman	shifts o	f source and	l as-grown	GON ((*)
---------------	---------------	----------	----------	--------------	------------	-------	-----

Source (Glucose)			As-grown GON			
Wavenumber (cm ⁻¹)	Intensity (Cnt)	Assignment	Dispersion Peaks	Peak Wavenumber (cm ⁻¹)	Intensity (Count)	
343.0	103.1	т ОН				
377.6	101.8	τ OH, γ CO, ν _{ring}	1	360.1	274.7	
425.1	169.0	$\beta \text{CO}, \delta_{\text{ring}}, \tau \text{ OH}$				
517.9	194.0	γ CO, βCO	2	582.8	340.5	
570.0	171.3					
775.8	162.6					
861.5	215.4	<i>v</i> _{ring} , <i>rock</i> CH ₂ , <i>v</i> CO	3	834.6	416.6	
918.6	184.3					
930.3	194.7					
1030.5	167.3	ν CO,ν _{ring}				
1062.0	158.5	$\nu_{\rm ring}, \nu {\rm CO}, \beta {\rm OH}$				
1076.5	243.2	ν CO,γ CO			484.0	
1104.5	209.8	$\nu_{\rm ring}, \nu \rm CO$	4	1067.8		
1124.3	210.0	v CO, δ ring, γ CO, v ring				
1163.1	158.1					
1215.6	147.1	$twCH_2, \beta OH, \beta CH$				
1234.7	148.7	β OH, β CH, γ CH	5	1264.9	524.6	
1259.1	148.7					
1274.5	146.3					
1333.4	237.7	β CH, γ CH	6	1395.3	556.2	

1363.9	183.6	<i>γ</i> CH, βOH, βCH, <i>tw</i> CH ₂			
1399.7	167.0	γ CH, βOH			
1380.9	166.4	<i>β</i> СН, <i>ү</i> СН, <i>β</i> ОН			
1435.8	159.8				
1461.1	180.2	sciCH ₂			
1521.5	136.2		7	1572.2	590.8
1562.9	132.5				
2888.1	265.7	v sCH ₂			
2906.0	441.3	<i>v</i> СН			
2940.6	462.4	<i>v</i> СН	8	2918.8	515.9
2968.3	383.6	<i>v</i> СН			
2978.2	443.7	<i>v</i> СН			
2993.6					

* The abbreviations *s*, *as*, ν , δ , β , γ , *sci*, *rock*, *tw*, and τ mean symmetric, asymmetric, stretch, deformation, bend, wag, scissoring, rock, twist, and torsion, respectively.

Annealed at 700℃	Annealed at 1300°C	
Raman shift (cm ⁻¹)	Raman shift (cm ⁻¹)	Assignment
1357.3	1357.3	D
1595.6	1595.6	G
2669.2	2694.9	2 <i>D</i>
2931.9	2928.7	D+G
3178.2	3168.6	2G

Table S3. The assignment of Raman peaks for annealed GON samples

Annealed Temperature	Peak	A	$x_{\rm c} ({\rm cm}^{-1})$	w (cm ⁻¹)	Y 0	R ²	A_D/A_G
700℃	D	201906.0	1356.4	307.7	6.594	0.985	3.02
	G	66760.4	1594.3	86.6			
1300℃	D	45385.6	1357.4	169.1	0	0.961	2.20
	G	20680.4	1595.8	87.0			

Table S4. The Lorentz fitting of *D* and *G* peaks for GON samples Annealed at 700 °C and 1300 °C